【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若上恒成立,求整數(shù)的最大值.

【答案】(1) ,當(dāng)時(shí),上為增函數(shù);當(dāng)時(shí),上為增函數(shù),在上為減函數(shù).

(2) 整數(shù)的最大值為.

【解析】分析:(1)先求導(dǎo)數(shù),再解不等式,根據(jù)a的大小討論單獨(dú)區(qū)間,(2)先參變分離,轉(zhuǎn)化研究函數(shù)最小值,利用導(dǎo)數(shù)可得單調(diào)性以及最小值取值范圍,最后確定整數(shù)的最大值.

詳解:(1),

當(dāng)時(shí),,則上為增函數(shù),

當(dāng)時(shí),由,得,則上為增函數(shù);

,得,則上為減函數(shù).

綜上,當(dāng)時(shí),上為增函數(shù);

當(dāng)時(shí),上為增函數(shù),在上為減函數(shù).

(2)由題意,恒成立,即,

設(shè),則,

.則,

所以,上為增函數(shù),

,,,

上有唯一實(shí)數(shù)根,

使得,

則當(dāng)時(shí),;當(dāng)時(shí),,

上為減函數(shù),上為增函數(shù),

所以處取得極小值,為,

,由,得整數(shù)的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡(jiǎn)單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老人,結(jié)果如下:

(Ⅰ)估計(jì)該地區(qū)老年人中,需要志愿提供幫助的老年人的比例;

(Ⅱ)能否有99℅的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?

(Ⅲ)根據(jù)(Ⅱ)的結(jié)論,能否提出更好的調(diào)查辦法來(lái)估計(jì)該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?說(shuō)明理由。

是否需要志愿者

性別

需要

40

30

不需要

160

270

參考數(shù)據(jù):

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓經(jīng)過(guò)點(diǎn),且點(diǎn)到橢圓的兩焦點(diǎn)的距離之和為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若是橢圓上的兩個(gè)點(diǎn),線段的中垂線的斜率為且直線交于點(diǎn)為坐標(biāo)原點(diǎn),求證:三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某公司為鄭州園博園生產(chǎn)某特許商品,該公司年固定成本為10萬(wàn)元,每生產(chǎn)千件需另投入2 .7萬(wàn)元,設(shè)該公司年內(nèi)共生產(chǎn)該特許商品工x千件并全部銷售完;每千件的銷售收入為R(x)萬(wàn)元,

,

(I)寫出年利潤(rùn)W(萬(wàn)元〉關(guān)于該特許商品x(千件)的函數(shù)解析式;

〔II〕年產(chǎn)量為多少千件時(shí),該公司在該特許商品的生產(chǎn)中所獲年利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某次測(cè)試中,卷面滿分為,考生得分為整數(shù),規(guī)定分及以上為及格.某調(diào)研課題小組為了調(diào)查午休對(duì)考生復(fù)習(xí)效果的影響,對(duì)午休和不午休的考生進(jìn)行了測(cè)試成績(jī)的統(tǒng)計(jì),數(shù)據(jù)如下表:

分?jǐn)?shù)段

午休考生人數(shù)

29

34

37

29

23

18

10

不午休考生人數(shù)

20

52

68

30

15

12

3

(1)根據(jù)上述表格完成下列列聯(lián)表:

及格人數(shù)

不及格人數(shù)

合計(jì)

午休

不午休

合計(jì)

(2)判斷“能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為成績(jī)及格與午休有關(guān)”?

0.10

0.05

0.010

0.001

2.706

3.841

6.635

10.828

(參考公式:其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“我將來(lái)要當(dāng)一名麥田里的守望者,有那么一群孩子在一塊麥田里玩,幾千萬(wàn)的小孩子,附近沒(méi)有一個(gè)大人,我是說(shuō)……除了我”《麥田里的守望者》中的主人公霍爾頓將自己的精神生活寄托于那廣闊無(wú)垠的麥田.假設(shè)霍爾頓在一塊成凸四邊形的麥田里成為守望者,如圖所示,為了分割麥田,他將連接,設(shè)中邊所對(duì)的角為,中邊所對(duì)的角為,經(jīng)測(cè)量已知.

1)霍爾頓發(fā)現(xiàn)無(wú)論多長(zhǎng),為一個(gè)定值,請(qǐng)你驗(yàn)證霍爾頓的結(jié)論,并求出這個(gè)定值;

2)霍爾頓發(fā)現(xiàn)麥田的生長(zhǎng)于土地面積的平方呈正相關(guān),記的面積分別為,為了更好地規(guī)劃麥田,請(qǐng)你幫助霍爾頓求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓 的左焦點(diǎn)為F,直線x=m與橢圓相交于點(diǎn)A、B,當(dāng)△FAB的周長(zhǎng)最大時(shí),△FAB的面積是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】張卡片分別寫有數(shù)字,從中任取張,可排出不同的四位數(shù)個(gè)數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“微信運(yùn)動(dòng)”是由騰訊開發(fā)的一個(gè)類似計(jì)步數(shù)據(jù)庫(kù)的公眾賬號(hào).用戶可以通過(guò)關(guān)注“微信運(yùn)動(dòng)”公眾號(hào)查看自己及好友每日行走的步數(shù)、排行榜,也可以與其他用戶進(jìn)行運(yùn)動(dòng)量的或點(diǎn)贊.現(xiàn)從某用戶的“微信運(yùn)動(dòng)”朋友圈中隨機(jī)選取40人,記錄他們某一天的行走步數(shù),并將數(shù)據(jù)整理如下:

步數(shù)/步

0~2000

2001~5000

5001~8000

8001~10000

10000以上

男性人數(shù)/人

1

6

9

5

4

女性人數(shù)/人

0

3

6

4

2

規(guī)定:用戶一天行走的步數(shù)超過(guò)8000步時(shí)為“運(yùn)動(dòng)型”,否則為“懈怠型”.

(1)將這40人中“運(yùn)動(dòng)型”用戶的頻率看作隨機(jī)抽取1人為“運(yùn)動(dòng)型”用戶的概率.從該用戶的“微信運(yùn)動(dòng)”朋友圈中隨機(jī)抽取4人,記為“運(yùn)動(dòng)型”用戶的人數(shù),求的數(shù)學(xué)期望;

(2)現(xiàn)從這40人中選定8人(男性5人,女性3人),其中男性中“運(yùn)動(dòng)型”有3人,“懈怠型”有2人,女性中“運(yùn)動(dòng)型”有2人,“懈怠型”有1人.從這8人中任意選取男性3人、女性2人,記選到“運(yùn)動(dòng)型”的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案