已知函數(shù)f(x)=ax-1-lnx(a∈R).
(1)若函數(shù)f(x)在x=1處取得極值,對?x∈(0,+∞),f(x)≥bx-2恒成立,求實數(shù)b的取值范圍;
(2)當(dāng)0<x<y<e2且x≠e時,試比較
y
x
1-lny
1-lnx
的大小.
分析:(1)函數(shù)f(x)的導(dǎo)數(shù)f′(x)=a-
1
x
.通過在x=1處取得極值,得出a=1;將f(x)≥bx-2恒成立,即(1-b)x>lnx-1,將b分離得出,b<1-
lnx-1
x
,令g(x)=1-
lnx-1
x
,只需b小于等于g(x)的最小值即可.利用導(dǎo)數(shù)求最小值.
(2)由(1)g(x)=1-
lnx-1
x
在(0,e2)上為減函數(shù),g(x)>g(y),1-
lnx-1
x
>1-
lny-1
y
,整理得
1-lnx
x
1-lny
y
,考慮將1-lnx除到右邊,為此分1-lnx正負(fù)分類求解.
解答:解:(1)函數(shù)f(x)的定義域為(0,+∞).f′(x)=a-
1
x

∵函數(shù)在x=
1
a
處取得極值,∴a=1,
f(x)=x-1-lnx,
∵f(x)≥bx-2,移項(1-b)x>lnx-1,將b分離得出,b<1-
lnx-1
x
,令g(x)=1-
lnx-1
x
,
則令g′(x)=
lnx-2
x2
,可知在(0,e2)上g′(x)<0,在(e2,+∞)上g′(x)>0,
∴g(x)在x=e2處取得極小值,也就是最小值.此時g(e2)=1-
1
e2

所以b≤1-
1
e2

(1)由(1)g(x)=1-
lnx-1
x
在(0,e2)上為減函數(shù).0<x<y<e2且x≠e時,
有g(shù)(x)>g(y),1-
lnx-1
x
>1-
lny-1
y
,整理得
1-lnx
x
1-lny
y

當(dāng)0<x<e時,1-lnx>0,由①得,
y
x
1-lny
1-lnx

當(dāng)e<x<e2時,1-lnx<0,由①得
y
x
1-lny
1-lnx
點評:本題考查函數(shù)與導(dǎo)數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值,并利用單調(diào)性比較大小,考查了分類討論、推理計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案