,則(   )
A.B.C.D.
A
利用估值法知a大于1,b在0與1之間,c小于0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)某隧道長2150m,通過隧道的車速不能超過m/s.一列有55輛車身長都為10m的同一車型的車隊(這種型號的車能行駛的最高速為40m/s),勻速通過該隧道,設(shè)車隊的速度為 m/s ,根據(jù)安全和車流的需要,當(dāng)時,相鄰兩車之間保持20 m的距離;當(dāng)時,相鄰兩車之間保持m的距離.自第1輛車車頭進入隧道至第55輛車尾離開隧道所用的時間為. (I)將表示為函數(shù);(II)求車隊通過隧道時間的最小值及此時車隊的速度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)y=滿足=,且時,=,則函數(shù)的圖像與函數(shù)的圖像交點個數(shù)是
A.2B.6 C.8D.多于8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=f (x)的圖象如右圖所示,則y =log0.2f (x)的示意圖是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù)
(I)求的值;(II)解不等式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分16分)通過研究學(xué)生的學(xué)習(xí)行為,心理學(xué)家發(fā)現(xiàn),學(xué)生的接受能力依賴于老師引入概念和描述問題所用的時間:講授開始時,學(xué)生的興趣激增;中間有一段不太長的時間,學(xué)生的興趣保持較理想的狀態(tài);隨后學(xué)生的注意力開始分散.分析結(jié)果和實驗表明,用f(x)表示學(xué)生掌握和接受概念的能力(f(x)的值越大,表示接受的能力越強),x表示提出和講授概念的時間(單位:min),可有以下的公式:
(1)講課開始后多少分鐘,學(xué)生的注意力最集中?能持續(xù)多少分鐘?
(2)講課開始后5分鐘與講課開始后25分鐘比較,何時學(xué)生的注意力更集中?
(3)一道數(shù)學(xué)難題,需要講解24分鐘,并且要求學(xué)生的注意力至少達到180,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生達到所需的狀態(tài)下講授完這道題目?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)已知函數(shù)(其中x≥1)
(1)求函數(shù)的反函數(shù);
(2)設(shè),求函數(shù)最小值及相應(yīng)的x值;
(3)若不等式對于區(qū)間上的每一個x值都成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列表示同一個函數(shù)的是( 。
A.f(x)=
x2-1
x+1
,g(x)=x-1
B.f(x)=
x2
,g(x)=(
x
)2
C.f(x)=|x|,g(t)=
t2
D.y=2log2x,y=log2x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

滿足                     

查看答案和解析>>

同步練習(xí)冊答案