如圖,在平面直角坐標(biāo)系中,點(diǎn),直線。設(shè)圓的半徑為,圓心在上。

(1)若圓心也在直線上,過點(diǎn)作圓的切線,求切線的方程;

(2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍。.

 

【答案】

(1);(2)

【解析】

試題分析:(1)由題設(shè)點(diǎn),又也在直線上,點(diǎn)滿足直線的方程,從而求出圓的方程,可將切線方程可設(shè)為,則圓心到切線的距離等于圓的半徑,即可求出切線的方程;(2)設(shè)點(diǎn),,,,,又點(diǎn)在圓上,,

點(diǎn)為的交點(diǎn),

若存在這樣的點(diǎn),則有交點(diǎn),

即圓心之間的距離滿足:,從而求出的取值范圍.

試題解析:(1)由題設(shè)點(diǎn),又也在直線上,

,由題,過A點(diǎn)切線方程可設(shè)為,

,則,解得:

又當(dāng)斜率不存在時(shí),也與圓相切,∴所求切線為,

 

(2)設(shè)點(diǎn),,,,,,又點(diǎn)在圓上,,

點(diǎn)為的交點(diǎn),

若存在這樣的點(diǎn),則有交點(diǎn),

即圓心之間的距離滿足:,

解得:

考點(diǎn):本題主要考查了圓的標(biāo)準(zhǔn)方程,直線與圓的位置關(guān)系,圓與圓的位置關(guān)系,以及兩點(diǎn)間的距離公式,解題的關(guān)鍵是抓住直線與圓,圓與圓的位置關(guān)系.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△OAB中,點(diǎn)P是線段OB及線段AB延長線所圍成的陰影區(qū)域(含邊界)的任意一點(diǎn),且
OP
=x
OA
+y
OB
則在直角坐標(biāo)平面內(nèi),實(shí)數(shù)對(duì)(x,y)所示的區(qū)域在直線y=4的下側(cè)部分的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1、如圖,在直角坐標(biāo)平面內(nèi)有一個(gè)邊長為a,中心在原點(diǎn)O的正六邊形ABCDEF,AB∥Ox.直線L:y=kx+t(k為常數(shù))與正六邊形交于M、N兩點(diǎn),記△OMN的面積為S,則函數(shù)S=f(t)的奇偶性為
偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)平面內(nèi)有一個(gè)邊長為a、中心在原點(diǎn)O的正六邊形ABCDEF,AB∥Ox.直線L:y=kx+t(k為常數(shù))與正六邊形交于M、N兩點(diǎn),記△OMN的面積為S,則函數(shù)S=f(t)的奇偶性為( 。
A、偶函數(shù)B、奇函數(shù)C、不是奇函數(shù),也不是偶函數(shù)D、奇偶性與k有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•海珠區(qū)一模)如圖,在直角坐標(biāo)平面內(nèi),射線OT落在60°的終邊上,任作一條射線OA,OA落在∠xOT內(nèi)的概率是
1
6
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,一定長m的線段,其端點(diǎn)A、B分別在x軸、y軸上滑動(dòng),設(shè)點(diǎn)M滿足(λ是大于0,且不等于1的常數(shù)).

試問:是否存在定點(diǎn)E、F,使|ME|、|MB|、|MF|成等差數(shù)列?若存在,求出E、F的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案