精英家教網 > 高中數學 > 題目詳情
1、設 f:x→|x|是集合A到集合B的映射,若A={-1,0,1},則A∩B只可能是( 。
分析:找出集合A中的元素,根據對應法則分別求出每一個元素所對的象,從而確定出集合B,然后求出集合A和集合B的交集即可.
解答:解:因為f:x→|x|是集合A到集合B的映射,
集合A的元素分別為-1,0,1,且|-1|=1,|1|=1,|0|=0,
所以集合B={0,1},又A={-1,0,1},
所以A∩B={0,1},
則A∩B只可能是{0,1}.
故選C
點評:此題考查了映射的定義,以及交集的運算,根據映射定義確定出集合B是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設f:x→|x|是集合A到集合B的映射.若A={-3,0,3},則A∩B=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設f(x)是定義在集合D上的函數,若對集合D中的任意兩數x1,x2恒有數學公式成立,則f(x)是定義在D上的β函數.
(1)試判斷f(x)=x2是否是其定義域上的β函數?
(2)設f(x)是定義在R上的奇函數,求證:f(x)不是定義在R上的β函數.
(3)設f(x)是定義在集合D上的函數,若對任意實數α∈[0,1]以及集合D中的任意兩數x1,x2恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),則稱f(x)是定義在D上的α-β函數.已知f(x)是定義在R上的α-β函數,m是給定的正整數,設an=f(n),n=1,2,3…m且a0=0,am=2m,記∫=a1+a2+a3+…+am,對任意滿足條件的函數f(x),求∫的最大值.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年浙江省臺州市臨海市杜橋中學高三(下)3月月考數學試卷(文科)(解析版) 題型:選擇題

設f(x),g(x),h(x)是R上的任意實值函數,如下定義兩個函數(f°g)(x)和(x)對任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),則下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中數學 來源:2011-2012學年江西省重點中學協(xié)作體高三第一次聯考數學試卷(理科)(解析版) 題型:選擇題

設f(x),g(x),h(x)是R上的任意實值函數,如下定義兩個函數(f°g)(x)和(x)對任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),則下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中數學 來源:2011年廣東省高考數學試卷(文科)(解析版) 題型:選擇題

設f(x),g(x),h(x)是R上的任意實值函數,如下定義兩個函數(f°g)(x)和(x)對任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),則下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

同步練習冊答案