已知函數(shù),.
(Ⅰ)解方程:;
(Ⅱ)設(shè),求函數(shù)在區(qū)間上的最大值的表達(dá)式;
(Ⅲ)若,,求 的最大值.
(Ⅰ).(Ⅱ).(Ⅲ).
解析試題分析:(Ⅰ),
或(舍去),
所以.
(Ⅱ),,
令,則,
①當(dāng)時(shí),,
②當(dāng)時(shí),,
若,則,
若,當(dāng),即時(shí),,
當(dāng),即時(shí),,
當(dāng),即時(shí),,
綜上,.
(Ⅲ)由題意知:,
所以,
其中,所以,
由知的最大值是,又單調(diào)遞增,
所以.
考點(diǎn):本題主要考查分段函數(shù)的概念,指數(shù)函數(shù)的性質(zhì),二次函數(shù)的圖象和性質(zhì),均值定理的應(yīng)用。
點(diǎn)評(píng):中檔題,本題綜合考查分段函數(shù)的概念,指數(shù)函數(shù)的性質(zhì),二次函數(shù)的圖象和性質(zhì),均值定理的應(yīng)用。利用換元思想,將問(wèn)題轉(zhuǎn)化成二次函數(shù)問(wèn)題,通過(guò)變換函數(shù)表達(dá)式,創(chuàng)建應(yīng)用均值定理的條件,體現(xiàn)應(yīng)用數(shù)學(xué)知識(shí)的靈活性。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知冪函數(shù),且在上單調(diào)遞增.
(1)求實(shí)數(shù)的值,并寫出相應(yīng)的函數(shù)的解析式;
(2)若在區(qū)間上不單調(diào),求實(shí)數(shù)的取值范圍;
(3)試判斷是否存在正數(shù),使函數(shù)在區(qū)間上的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b0/d/k6zdy2.png" style="vertical-align:middle;" />若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知二次函數(shù)f(x)有兩個(gè)零點(diǎn)0和-2,且f(x)最小值是-1,函數(shù)g(x)與f(x)的圖像關(guān)于原點(diǎn)對(duì)稱.
(1)求f(x)和g(x)的解析式;
(2)若h(x)=f(x)-λg(x)在區(qū)間[-1,1]上是增函數(shù),求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)求函數(shù)的定義域;
(2)若存在,對(duì)任意,總存在唯一,使得成立.求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
森林失火了,火正以的速度順風(fēng)蔓延,消防站接到報(bào)警后立即派消防員前去,在失火后到達(dá)現(xiàn)場(chǎng)開(kāi)始救火,已知消防隊(duì)在現(xiàn)場(chǎng)每人每分鐘平均可滅火,所消耗的滅火材料、勞務(wù)津貼等費(fèi)用每人每分鐘元,另附加每次救火所損耗的車輛、器械和裝備等費(fèi)用平均每人元,而每燒毀森林的損失費(fèi)為元,設(shè)消防隊(duì)派了名消防員前去救火,從到達(dá)現(xiàn)場(chǎng)開(kāi)始救火到火全部撲滅共耗時(shí).
(1)求出與的關(guān)系式;
(2)問(wèn)為何值時(shí),才能使總損失最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
2013年某工廠生產(chǎn)某種產(chǎn)品,每日的成本(單位:萬(wàn)元)與日產(chǎn)量(單位:噸)滿足函數(shù)關(guān)系式,每日的銷售額(單位:萬(wàn)元)與日產(chǎn)量的函數(shù)關(guān)系式
已知每日的利潤(rùn),且當(dāng)時(shí),.
(1)求的值;
(2)當(dāng)日產(chǎn)量為多少噸時(shí),每日的利潤(rùn)可以達(dá)到最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
欲修建一橫斷面為等腰梯形(如圖1)的水渠,為降低成本必須盡量減少水與渠壁的接觸面,若水渠橫斷面面積設(shè)計(jì)為定值S,渠深h,則水渠壁的傾角α(0°<α<90°)應(yīng)為多大時(shí),方能使修建成本最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某商品的進(jìn)價(jià)為每件40元,售價(jià)為每件50元,每個(gè)月可賣出210件;如果每件商品在該售價(jià)的基礎(chǔ)上每上漲1元,則每個(gè)月少賣10件(每件售價(jià)不能高于65元).設(shè)每件商品的售價(jià)上漲元(為正整數(shù)),每個(gè)月的銷售利潤(rùn)為元.(14分)
(1)求與的函數(shù)關(guān)系式并直接寫出自變量的取值范圍;
(2)每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤(rùn)?最大的月利潤(rùn)是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com