(文)求數(shù)列{bn}的前n項(xiàng)和Tn.
(理)求數(shù)列{an}的前n項(xiàng)和Sn和數(shù)列{bn}的前n項(xiàng)和Tn.
解析:(文)由題意an+1=2an+8,
bn=an+1-an=an+8.
bn+1=an+1+8=2an+16.∴=2.
b1=a2-a1=2a1+8-a1=a1+8=9.
∴bn=9×2n-1.
Tn===9×(2n-1).
(理)由題意an+1=2an+8,
bn=an+1-an=an+8.
bn+1=an+1+8=2an+16.∴=2.
b1=a2-a1=2a1+8-a1=a1+8=9.
∴bn=9×2n-1.
Tn===9×(2n-1).
由bn=an+8,得an=bn-8=9×2n-1-8,
Sn=(9-8)+(9×2-8)+(9×22-8)+…+(9×2n-1-8)
=9(1+2+22+…+2n-1)-8n
=-8n
=9×(2n-1)-8n
=9×2n-8n-9.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:高中數(shù)學(xué)全解題庫(kù)(國(guó)標(biāo)蘇教版·必修4、必修5) 蘇教版 題型:044
以數(shù)列{an}的任意相鄰兩項(xiàng)為坐標(biāo)的點(diǎn)Pn(an,an+1)(n∈N*)均在一次函數(shù)y=2x+k的圖象上,數(shù)列{bn}滿足條件bn=an+1-an(n∈N*,b1≠0).
(1)求證:數(shù)列{bn}是等比數(shù)列;
(2)設(shè)數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,若S6=T4,S5=-9,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2007屆東莞市高三文科數(shù)學(xué)高考模擬題(二) 題型:044
以數(shù)列{an}的任意相鄰兩項(xiàng)為坐標(biāo)的點(diǎn)Pn(an,an+1)(n∈N)均在一次函數(shù)y=2x+k的圖象上,數(shù)列{bn}滿足條件:bn=an+1-an(n∈N,b1≠0),
(1)求證:數(shù)列{bn}是等比數(shù)列;
(2)設(shè)數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,若S6=T4,S5=-9,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江蘇省泗洪縣實(shí)驗(yàn)中學(xué)2008屆高三第三次月考數(shù)學(xué)試卷 題型:044
以數(shù)列{an}的任意相鄰兩項(xiàng)為坐標(biāo)的點(diǎn)Pn(an,an+1)(n∈N*)均在一次函數(shù)y=2x+k,(k≠0)的圖象上,數(shù)列{bn}滿足條件:bn=an+1-an(n∈N*),
(1)求證:數(shù)列{bn}是等比數(shù)列;
(2)設(shè)數(shù)列{an}、{bn}的前n項(xiàng)和分別為Sn、Tn,若S6=T4,S5=-9,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)求證:數(shù)列{bn}是等比數(shù)列;
(2)設(shè)數(shù)列{an}、{bn}的前n項(xiàng)和分別為Sn、Tn,若S6=T4,S5=-9,求k的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com