【題目】如圖所示,某區(qū)有一塊空地,其中,,.當(dāng)?shù)貐^(qū)政府規(guī)劃將這塊空地改造成一個(gè)旅游景點(diǎn),擬在中間挖一個(gè)人工湖,其中都在邊上,且,挖出的泥土堆放在地帶上形成假山,剩下的地帶開設(shè)兒童游樂場.為安全起見,需在的周圍安裝防護(hù)網(wǎng).
(1)當(dāng)時(shí),求防護(hù)網(wǎng)的總長度;
(2)若要求挖人工湖用地的面積是堆假山用地的面積的倍,試確定的大。
(3)為節(jié)省投入資金,人工湖的面積要盡可能小,問如何設(shè)計(jì)施工方案,可使的面積最?最小面積是多少?
【答案】(1)(2)(3)當(dāng)且僅當(dāng)時(shí),的面積取最小值為
【解析】
(1)根據(jù)題意可得,在中,利用余弦定理求出,從而可得,即,進(jìn)而可得為正三角形,即求解.
(2)設(shè),利用三角形的面積公式,在中,利用正弦定理可得,從而,即,即求解.
(3)設(shè),由(2)知,在中,利用正弦定理可得,利用三角形的面積公式可得,再利用二倍角公式以及輔助角公式結(jié)合三角函數(shù)的性質(zhì)即可求解.
(1)在中,,,,
在中,,
由余弦定理,得,
,即,,
為正三角形,所以的周長為,
即防護(hù)網(wǎng)的總長度為.
(2)設(shè),,
,即,
在中,由,得,
從而,即,由,
得,,即.
(3)設(shè),由(2)知,
又在中,由,得,
,
當(dāng)且僅當(dāng),即時(shí),
的面積取最小值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面向量,滿足:||=2,||=1.
(1)若(2)()=1,求的值;
(2)設(shè)向量,的夾角為θ.若存在t∈R,使得,求cosθ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】按規(guī)定:車輛駕駛員血液酒精濃度在20—80mg/100ml(不含80)之間,屬酒后駕車;在(含80)以上時(shí),屬醉酒駕車.某市交警在某路段的一次攔查行動(dòng)中,依法檢查了250輛機(jī)動(dòng)車,查出酒后駕車和醉酒駕車的駕駛員20人,右圖是對這20人血液中酒精含量進(jìn)行檢查所得結(jié)果的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,求:此次抽查的250人中,醉酒駕車的人數(shù);
(2)從血液酒精濃度在范圍內(nèi)的駕駛員中任取2人,求恰有1人屬于醉酒駕車的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+bx+c(b,c∈R),對任意的x∈R,恒有f′(x)≤f(x).
(1)證明:當(dāng)x≥0時(shí),f(x)≤(x+c)2;
(2)若對滿足題設(shè)條件的任意b,c,不等式f(c)-f(b)≤M(c2-b2)恒成立,求M的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙二人進(jìn)行定點(diǎn)投籃比賽,已知甲、乙兩人每次投進(jìn)的概率均為,兩人各投一次稱為一輪投籃.
求乙在前3次投籃中,恰好投進(jìn)2個(gè)球的概率;
設(shè)前3輪投籃中,甲與乙進(jìn)球個(gè)數(shù)差的絕對值為隨機(jī)變量,求的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD⊥AB,∠CAB=60°,∠BCD=120°,AC=2.
(1)若∠ABC=30°,求DC;
(2)記∠ABC=θ,當(dāng)θ為何值時(shí),△BCD的面積有最小值?求出最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).
(1)求,判斷函數(shù)的單調(diào)性并證明.
(2)對任意的,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.
(1)若a=-2,求B∩A,B∩(UA);(2)若A∪B=A,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】紅隊(duì)隊(duì)員甲、乙、丙與藍(lán)隊(duì)隊(duì)員,,進(jìn)行圍棋比賽,甲對,乙對,丙對各一盤.已知甲勝、乙勝、丙勝的概率分別為0.6,0.5,0.5,假設(shè)各盤比賽結(jié)果相互獨(dú)立,則紅隊(duì)至少兩名隊(duì)員獲勝的概率是____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com