我們將具有下列性質的所有函數(shù)組成集合M:函數(shù)y=f(x)(x∈D),對任意x,y,D均滿足f()≥[f(x)+f(y)],當且僅當x=y(tǒng)時等號成立.

(1)若定義在(0,+∞)上的函數(shù)f(x)∈M,試比較f(3)+f(5)與2f(4)的大。

(2)設函數(shù)g(x)=-x2,求證:g(x)∈M

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2008•奉賢區(qū)模擬)我們將具有下列性質的所有函數(shù)組成集合M:函數(shù)y=f(x)(x∈D),對任意x,y,
x+y
2
∈D
均滿足f(
x+y
2
)≥
1
2
[f(x)+f(y)]
,當且僅當x=y時等號成立.
(1)若定義在(0,+∞)上的函數(shù)f(x)∈M,試比較f(3)+f(5)與2f(4)大。
(2)給定兩個函數(shù):f1(x)=
1
x
(x>0)
,f2(x)=logax(a>1,x>0).證明:f1(x)∉M,f2(x)∈M.
(3)試利用(2)的結論解決下列問題:若實數(shù)m、n滿足2m+2n=1,求m+n的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•奉賢區(qū)一模)我們將具有下列性質的所有函數(shù)組成集合M:函數(shù)y=f(x)(x∈D),對任意x,y,
x+y
2
∈D
均滿足f(
x+y
2
)≥
1
2
[f(x)+f(y)]
,當且僅當x=y時等號成立.
(1)若定義在(0,+∞)上的函數(shù)f(x)∈M,試比較f(3)+f(5)與2f(4)大。
(2)設函數(shù)g(x)=-x2,求證:g(x)∈M.
(3)已知函數(shù)f(x)=log2x∈M.試利用此結論解決下列問題:若實數(shù)m、n滿足2m+2n=1,求m+n的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

我們將具有下列性質的所有函數(shù)組成集合M:函數(shù),對任意均滿足,當且僅當時等號成立。

(1)若定義在(0,+∞)上的函數(shù)∈M,試比較大小.

(2)設函數(shù)g(x)=-x2,求證:g(x)∈M.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

我們將具有下列性質的所有函數(shù)組成集合M:函數(shù)y=f(x)(x∈D),對任意數(shù)學公式均滿足數(shù)學公式,當且僅當x=y時等號成立.
(1)若定義在(0,+∞)上的函數(shù)f(x)∈M,試比較f(3)+f(5)與2f(4)大。
(2)設函數(shù)g(x)=-x2,求證:g(x)∈M.
(3)已知函數(shù)f(x)=log2x∈M.試利用此結論解決下列問題:若實數(shù)m、n滿足2m+2n=1,求m+n的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江西省新余市新鋼中學高三(上)第二次月考數(shù)學試卷(理科)(解析版) 題型:解答題

我們將具有下列性質的所有函數(shù)組成集合M:函數(shù)y=f(x)(x∈D),對任意均滿足,當且僅當x=y時等號成立.
(1)若定義在(0,+∞)上的函數(shù)f(x)∈M,試比較f(3)+f(5)與2f(4)大。
(2)給定兩個函數(shù):,f2(x)=logax(a>1,x>0).證明:f1(x)∉M,f2(x)∈M.
(3)試利用(2)的結論解決下列問題:若實數(shù)m、n滿足2m+2n=1,求m+n的最大值.

查看答案和解析>>

同步練習冊答案