如果函數(shù)對(duì)于任意實(shí)數(shù),存在常數(shù),使該不等式恒成立,就稱函數(shù)為有界泛涵,下面有4個(gè)函數(shù):① ② 

 ④,其中有兩個(gè)屬于有界泛涵,它們是(    )

A. ①②           B. ②④            C. ①③             D. ③④

 

【答案】

D

【解析】因?yàn)?/p>

 ② 不存在M成立,

 ④,故選D.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

42、給出下列命題:
①如果函數(shù)f(x)對(duì)任意的x1,x2∈R,且x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0,則函數(shù)f(x)在R上是減函數(shù);
②如果函數(shù)f(x)對(duì)任意的x∈R,都滿足f(x)=-f(2+x),那么函數(shù)f(x)是周期函數(shù);
③函數(shù)y=f(x)與函數(shù)y=f(x+1)-2的圖象一定不能重合;
④對(duì)于任意實(shí)數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x>0時(shí),f′(x)>0,g′(x)>0,則x<0時(shí),f′(x)>g′(x).
其中正確的命題是
①②④
.(把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•杭州二模)已知函數(shù)f(x)=lnx,g(x)=
1
2
x2

(Ⅰ)設(shè)函數(shù)F(x)=f(x)-ag(x),若x∈(0,2),函數(shù)F(x)不存在極值,求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)函數(shù)G(x)=
(x-1)[f2(x)+g(x)]
g(x)
,如果對(duì)于任意實(shí)數(shù)x∈(1,t],都有不等式tG(x)-xG(t)≤G(x)-G(t)成立,求實(shí)數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波二模)設(shè)函數(shù)f(x)=lnx+ax2-(3a+1)x+(2a+1),其中a∈R.
(Ⅰ)如果x=1是函數(shù)f(x)的一個(gè)極值點(diǎn),求實(shí)數(shù)a的值及f(x)的最大值;
(Ⅱ)求實(shí)數(shù)a的值,使得函數(shù)f(x)同時(shí)具備如下的兩個(gè)性質(zhì):
①對(duì)于任意實(shí)數(shù)x1,x2∈(0,1)且x1≠x2
f(x1)+f(x2)
2
<f(
x1+x2
2
)
恒成立;
②對(duì)于任意實(shí)數(shù)x1,x2∈(1,+∞)且x1≠x2
f(x1)+f(x2)
2
>f(
x1+x2
2
)
恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年新疆烏魯木齊一中高三第一次月考數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

如果函數(shù)對(duì)于任意實(shí)數(shù),存在常數(shù),使該不等式恒成立,就稱函數(shù)為有界泛涵,下面有4個(gè)函數(shù):① ② 

 ④,其中有兩個(gè)屬于有界泛涵,它們是(    )

A. ①②           B. ②④            C. ①③             D. ③④

 

查看答案和解析>>

同步練習(xí)冊(cè)答案