已知函數(shù)y=f(x)滿足f(a-tanθ)=cotθ-1,(其中,a、θ∈R均為常數(shù))
(1)求函數(shù)y=f(x)的解析式;
(2)利用函數(shù)y=f(x)構(gòu)造一個(gè)數(shù)列{xn},方法如下:
對(duì)于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…
在上述構(gòu)造過(guò)程中,如果xi(i=1,2,3,…)在定義域中,構(gòu)造數(shù)列的過(guò)程繼續(xù)下去;如果xi不在定義域中,則構(gòu)造數(shù)列的過(guò)程停止.
①如果可以用上述方法構(gòu)造出一個(gè)常數(shù)列{xn},求a的取值范圍;
②如果取定義域中的任一值作為x1,都可以用上述方法構(gòu)造出一個(gè)無(wú)窮數(shù)列{xn},求a實(shí)數(shù)的值.
分析:(1)由
x=a-tanθ
y=cotθ-1
,可推導(dǎo)出y=f(x)=
x+1-a
a-x
,(x≠a).
(2)①根據(jù)題意,只需當(dāng)x≠a時(shí),方程f(x)=x有解,方程x2+(1-a)x+1-a=0有不等于a的解.將x=a代入方程左邊,得左邊為1,故方程不可能有解x=a.由由根的判別式,可得a的取值范圍是(-∞,3]∪[1,+∞).
②根據(jù)題意,
x+1-a
a-x
=a在R中無(wú)解,亦即當(dāng)x≠a時(shí),方程(1+a)x=a2+a-1無(wú)實(shí)數(shù)解.由此能夠?qū)С鯽=-1.
解答:解:(1)令
x=a-tanθ
y=cotθ-1
,則
tanθ=a-x,①
cotθ=1+y,②

①×②,并整理,得y=
x+1-a
a-x

∴y=f(x)=
x+1-a
a-x
,(x≠a).(4分)
(2)①根據(jù)題意,只需當(dāng)x≠a時(shí),方程f(x)=x有解,
亦即方程x2+(1-a)x+1-a=0有不等于a的解.
將x=a代入方程左邊,得左邊為1,故方程不可能有解x=a.
由△=(1-a)2-4(1-a)≥0,得a≤-3或a≥1,
即實(shí)數(shù)a的取值范圍是(-∞,3]∪[1,+∞).(9分)
②根據(jù)題意,
x+1-a
a-x
=a在R中無(wú)解,
亦即當(dāng)x≠a時(shí),方程(1+a)x=a2+a-1無(wú)實(shí)數(shù)解.
由于x=a不是方程(1+a)x=a2+a-1的解,
所以對(duì)于任意x∈R,方程(1+a)x=a2+a-1無(wú)實(shí)數(shù)解,
∴a=-1即為所求a的值.(14分)
點(diǎn)評(píng):本題考查函數(shù)的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

16、已知函數(shù)y=f(x)是R上的奇函數(shù)且在[0,+∞)上是增函數(shù),若f(a+2)+f(a)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2、已知函數(shù)y=f(x+1)的圖象過(guò)點(diǎn)(3,2),則函數(shù)f(x)的圖象關(guān)于x軸的對(duì)稱圖形一定過(guò)點(diǎn)(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)是偶函數(shù),當(dāng)x<0時(shí),f(x)=x(1-x),那么當(dāng)x>0時(shí),f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當(dāng)x>0 時(shí),f(x)的圖象如圖所示,則不等式x[f(x)-f(-x)]≤0 的解集為
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)的圖象如圖,則滿足f(log2(x-1))•f(2-x2-1)≥0的x的取值范圍為
(1,3]
(1,3]

查看答案和解析>>

同步練習(xí)冊(cè)答案