已知圓:交軸于兩點,曲線是以為長軸,直線:為準(zhǔn)線的橢圓.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若是直線上的任意一點,以為直徑的圓與圓相交于兩點,求證:直線必過定點,并求出點的坐標(biāo);
(3)如圖所示,若直線與橢圓交于兩點,且,試求此時弦的長.
同下
(Ⅰ)設(shè)橢圓的標(biāo)準(zhǔn)方程為,則:
,從而:,故,所以橢圓的標(biāo)準(zhǔn)方程為!4分
(Ⅱ)設(shè),則圓方程為 與圓聯(lián)立消去得的方程為,
過定點。 ………………8分
(Ⅲ)解法一:設(shè),則,………①
,,即:
代入①解得:(舍去正值), ,所以,
從而圓心到直線的距離,
從而。 …………………16分
解法二:過點分別作直線的垂線,垂足分別為,設(shè)的傾斜角為,則:
,從而,
由得:,,故,
由此直線的方程為,以下同解法一。
解法三:將與橢圓方程聯(lián)立成方程組消去得:,設(shè),則。
,,所以代入韋達定理得:
,
消去得:,,由圖得:,
所以,以下同解法一。
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分16分)已知圓:交軸于兩點,曲線是以為長軸,直線:為準(zhǔn)線的橢圓.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若是直線上的任意一點,以為直徑的圓與圓相交于兩點,求證:直線必過定點,并求出點的坐標(biāo);(3)如圖所示,若直線與橢圓交于兩點,且,試求此時弦的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省淮安市高三第二次調(diào)研測試數(shù)學(xué)試卷(解析版) 題型:解答題
已知圓:交軸于兩點,曲線是以為長軸,直線:為準(zhǔn)線的橢圓.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若是直線上的任意一點,以為直徑的圓與圓相交于兩點,求證:直線必過定點,并求出點的坐標(biāo);
(3)如圖所示,若直線與橢圓交于兩點,且,試求此時弦的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
已知圓:交軸于兩點,曲線是以為長軸,直線:為準(zhǔn)線的橢圓.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若是直線上的任意一點,以為直徑的
圓與圓相交于兩點,求證:直線
必過定點,并求出點的坐標(biāo);
(Ⅲ)如圖所示,若直線與橢圓交于兩點,
且,試求此時弦的長。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分16分)已知圓:交軸于兩點,曲線是以為長軸,直線:為準(zhǔn)線的橢圓.(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若是直線上的任意一點,以為直徑的圓與圓相交于兩點,求證:直線必過定點,并求出點的坐標(biāo);
(3)如圖所示,若直線與橢圓交于兩點,且,試求此時弦的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com