【題目】已知函數(shù),mR.
(1)若m=﹣1,求函數(shù)在區(qū)間[,e]上的最小值;
(2)若m>0,求函數(shù)的單調增區(qū)間.
【答案】(1);(2)見解析.
【解析】
(1)當m=﹣1時表示原函數(shù)解析式,利用導函數(shù)分析單調性進而求得指定區(qū)間的最小值;
(2)對原函數(shù)求導,利用分類討論m=1時,m>1時和0<m<1時,導函數(shù)的大于零的解集,即為原函數(shù)的單調遞增區(qū)間.
解:(1)m=﹣1時,,,x[,e],
令得(舍去)或者,列表如下:
x | 1 | e | |||
- | 0 | + | |||
極小值 |
所以,當x=1時,函數(shù)的最小值為,
(2)
①當m=1時,對任意x>0,都有恒成立(當且僅當x=1時,)
則函數(shù)在區(qū)間(0,)上單調遞增;
②當m>1時,令,得x<1或x>m;
則函數(shù)在區(qū)間(0,1),(m,)上單調遞增;
③當0<m<1時,令,得x<m或x>1;
則函數(shù)在區(qū)間(0,m),(1,)上單調遞增;
綜上可得,
當m=1時,函數(shù)的單調增區(qū)間為(0,);
當m>1時,函數(shù)的單調增區(qū)間為(0,1),(m,);
當0<m<1時,函數(shù)的單調增區(qū)間為(0,m),(1,).
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的最大值;
(2)令,討論函數(shù)的單調區(qū)間;
(3)若,正實數(shù)滿足,證明:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩人各射擊一次,擊中目標的概率分別是和,假設兩人射擊是否擊中目標相互沒有影響,每人每次射擊是否擊中目標相互也沒有影響.
(1)求甲、乙兩人各射擊一次均擊中目標的概率;
(2)若乙在射擊中出現(xiàn)連續(xù)次未擊中目標則會被終止射擊,求乙恰好射擊次后被終止射擊的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市教育與環(huán)保部門聯(lián)合組織該市中學參加市中學生環(huán)保知識團體競賽,根據(jù)比賽規(guī)則,某中學選拔出8名同學組成參賽隊,其中初中學部選出的3名同學有2名女生;高中學部選出的5名同學有3名女生,競賽組委會將從這8名同學中隨機選出4人參加比賽.
(Ⅰ)設“選出的4人中恰有2名女生,而且這2名女生來自同一個學部”為事件,求事件的概率;
(Ⅱ)設為選出的4人中女生的人數(shù),求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某花圃為提高某品種花苗質量,開展技術創(chuàng)新活動,在A,B實驗地分別用甲、乙方法培育該品種花苗.為觀測其生長情況,分別在A,B試驗地隨機抽選各50株,對每株進行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80及以上的花苗為優(yōu)質花苗.
(1)求圖中a的值,并求綜合評分的中位數(shù);
(2)用樣本估計總體,以頻率作為概率,若在A,B兩塊實驗地隨機抽取3棵花苗,求所抽取的花苗中的優(yōu)質花苗數(shù)的分布列和數(shù)學期望;
(3)填寫下面的列聯(lián)表,并判斷是否有90%的把握認為優(yōu)質花苗與培育方法有關.
優(yōu)質花苗 | 非優(yōu)質花苗 | 合計 | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合計 |
附:下面的臨界值表僅供參考.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中.)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線的斜率為1的切線方程;
(Ⅱ)當時,求證:;
(Ⅲ)設,記在區(qū)間上的最大值為M(a),當M(a)最小時,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P—ABC中,PA⊥平面ABC,AC⊥BC,D為PC中點,E為AD中點,PA=AC=2,BC=1.
(1)求證:AD⊥平面PBC:
(2)求PE與平面ABD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費(單位:萬元)對年銷售量(單位:噸)和年利潤(單位:萬元)的影響.對近六年的年宣傳費和年銷售量()的數(shù)據(jù)作了初步統(tǒng)計,得到如下數(shù)據(jù):
年份 | ||||||
年宣傳費(萬元) | ||||||
年銷售量(噸) |
經(jīng)電腦模擬,發(fā)現(xiàn)年宣傳費(萬元)與年銷售量(噸)之間近似滿足關系式().對上述數(shù)據(jù)作了初步處理,得到相關的值如表:
(1)根據(jù)所給數(shù)據(jù),求關于的回歸方程;
(2)已知這種產(chǎn)品的年利潤與,的關系為若想在年達到年利潤最大,請預測年的宣傳費用是多少萬元?
附:對于一組數(shù)據(jù),,…,,其回歸直線中的斜率和截距的最小二乘估計分別為,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com