已知曲線(xiàn)y=(a-3)x3+ln x存在垂直于y軸的切線(xiàn),函數(shù)f(x)=x3-ax2-3x+1在[1,2]上單調(diào)遞增,則a的取值范圍為_(kāi)_______.
(-∞,0]
由已知條件可得方程y′=3(a-3)x2=0(x>0),即3(a-3)x3+1=0有大于0的實(shí)數(shù)根,即得x3=->0,解得a<3,又由函數(shù)f(x)=x3-ax2-3x+1在[1,2]上單調(diào)遞增,可得不等式f′(x)=3x2-2ax-3≥0在[1,2]上恒成立,即得a≤在[1,2]上恒成立,由函數(shù)y=x-在[1,2]上單調(diào)遞增可得,該函數(shù)的最小值為0,∴a≤0,綜上可得實(shí)數(shù)a的取值范圍為(-∞,0].
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知
(1)若存在單調(diào)遞減區(qū)間,求實(shí)數(shù)的取值范圍;
(2)若,求證:當(dāng)時(shí),恒成立;
(3)設(shè),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求的極值;
(2)當(dāng)時(shí),討論的單調(diào)性;
(3)若對(duì)任意的,恒有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

函數(shù),其中為實(shí)常數(shù)。
(1)討論的單調(diào)性;
(2)不等式上恒成立,求實(shí)數(shù)的取值范圍;
(3)若,設(shè),。是否存在實(shí)常數(shù),既使又使對(duì)一切恒成立?若存在,試找出的一個(gè)值,并證明;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=ax3x2cxd(a,cd∈R)滿(mǎn)足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.
(1)求a,c,d的值;
(2)若h(x)=x2bx,解不等式f′(x)+h(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù)f(x)=ax2bxc(a,b,c∈R),若x=-1為函數(shù)f(x)ex的一個(gè)極值點(diǎn),則下列圖象不可能為yf(x)的圖象是(  ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=(ax2bxc)exf(0)=1,f(1)=0.
(1)若f(x)在區(qū)間[0,1]上單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=0時(shí),是否存在實(shí)數(shù)m使不等式2f(x)+4xexmx+1≥-x2+4x+1對(duì)任意x∈R恒成立?若存在,求出m的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若實(shí)數(shù)滿(mǎn)足,則的最小值為(   )
A.B.2C.D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)y=cos(2x+1)的導(dǎo)數(shù)是(  )
A.y′=sin(2x+1)
B.y′=-2xsin(2x+1)
C.y′=-2sin(2x+1)
D.y′=2xsin(2x+1)

查看答案和解析>>

同步練習(xí)冊(cè)答案