【題目】定義區(qū)間,,,的長度為.如果一個函數的所有單調遞增區(qū)間的長度之和為(其中,為自然對數的底數),那么稱這個函數為“函數”.下列四個命題:
①函數不是“函數”;
②函數是“函數”,且;
③函數是“函數”;
④函數是“函數”,且.
其中正確的命題的個數為( )
A. 4個B. 3個C. 2個D. 1個
【答案】B
【解析】
利用導數、函數的圖象,對四個命題逐一判斷出真假。
分析命題①: 定義域為,,
,函數在上是單調遞增,顯然這個區(qū)間沒有長度,因此函數不是“函數”,故命題①是真命題。
分析命題②:,定義域為,
當時,函數是增函數,
構造兩個函數,,圖象如下圖所示:
通過圖象可知當,而,即, ,所以當時,函數是增函數,增區(qū)間的長度為,又因為顯然有成立,所以函數是“m函數”, 即成立,故命題②是真命題。
分析命題③: 函數 定義域為,
顯然時,,此時函數是單調遞增函數,增區(qū)間為,而區(qū)間沒有長度,故函數不是“函數”,故命題③是假命題。
分析命題④:函數 定義域,
當時,是增函數,故只需成立,是增函數,
也就是成立,是增函數,構造二個函數, 如下圖所示:
通過圖象可知:當時,,而,所以。從而有時,時,函數是增函數,顯然區(qū)間長度為,而
所以函數是“函數”,又,即。故命題④是真命題。
綜上所述:正確的命題的個數為3個,故本題選B。
科目:高中數學 來源: 題型:
【題目】已知雙曲線的中心在原點,焦點F1,F2在坐標軸上,離心率為,且過點.點M(3,m)在雙曲線上.
(1)求雙曲線的方程;
(2)求證:;
(3)求△F1MF2的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設點,分別是橢園C:的左、右焦點,且橢圓C上的點到的距離的最小值為,點M,N是橢圓C上位于x軸上方的兩點,且向量與向量平行.
求橢圓C的方程;
當時,求的面積;
當時,求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C的中心為坐標原點,焦點在坐標軸上,且經過點M(4,1),N(2,2).
(1)求橢圓C的方程;
(2)若斜率為1的直線與橢圓C交于不同的兩點,且點M到直線l的距離為,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設A,B,C是三個事件,給出下列四個事件:
(Ⅰ)A,B,C中至少有一個發(fā)生;
(Ⅱ)A,B,C中最多有一個發(fā)生;
(Ⅲ)A,B,C中至少有兩個發(fā)生;
(Ⅳ)A,B,C最多有兩個發(fā)生;
其中相互為對立事件的是( )
A.Ⅰ和ⅡB.Ⅱ和ⅢC.Ⅲ和ⅣD.Ⅳ和Ⅰ
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】老況、老王、老顧、小周、小郭和兩位王女士共7人要排成一排拍散伙紀念照.
(1)若兩位王女士必須相鄰,則共有多少種排隊種數?
(2)若老王與老況不能相鄰,則共有多少種排隊種數?
(3)若兩位王女士必須相鄰,若老王與老況不能相鄰,小郭與小周不能相鄰,則共有多少種排隊種數?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動點E到點A(2,0)與點B(-2,0)的直線斜率之積為-,點E的軌跡為曲線C.
(1)求曲線C的方程;
(2)過點D(l,0)作直線l與曲線C交于P,Q兩點,且=-.求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,直線的參數方程為(為參數,傾斜角),曲線C的參數方程為(為參數,),以坐標原點為極點,軸正半軸為極軸建立極坐標系。
(1)寫出曲線的普通方程和直線的極坐標方程;
(2)若直線與曲線恰有一個公共點,求點的極坐標。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com