8、如圖,已知ABCD-A1B1C1D1是棱長為3的正方體,點(diǎn)E在AA1上,點(diǎn)F在CC1上,且AE=FC1=1.求證:E,B,F(xiàn),D1四點(diǎn)共面;
分析:要證:E,B,F(xiàn),D1四點(diǎn)共面,只需證BF∥D1E即可.
解答:證明:在BB1取點(diǎn)M,使得BM=AE
∵ABCD-A1B1C1D1是棱長為3的正方體
∴ME∥AB且ME=AB
∴ME∥C1D1且ME=C1D1
∴四邊形C1D1EM是平行四邊形
∴D1E∥C1M
又∵C1M∥FB且C1M=FB
∴D1E∥FB且D1E=FB
∴四邊形EBFD1是平行四邊形
∴E,B,F(xiàn),D1四點(diǎn)共面
點(diǎn)評(píng):此題考查學(xué)生的空間想象能力和邏輯推理能力,考查對(duì)四點(diǎn)共面的理解與掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

18、如圖,已知ABCD是矩形,E是以CD為直徑的半圓周上一點(diǎn),且平面CDE⊥平面ABCD,求證:CE⊥平面ADE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知ABCD 為平行四邊形,∠A=60°,AF=2FB,AB=6,點(diǎn)E 在CD 上,EF∥BC,BD⊥AD,BD 與EF 相交于N.現(xiàn)將四邊形ADEF 沿EF 折起,使點(diǎn)D 在平面BCEF 上的射影恰在直線BC 上.
(Ⅰ) 求證:BD⊥平面BCEF;
(Ⅱ) 求折后直線DE 與平面BCEF 所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•汕頭二模)如圖,已知ABCD-A1B1C1D1是底面邊長為1的正四棱柱,
(1)證明:平面AB1D1⊥平面AA1C1
(2)當(dāng)二面角B1-AC1-D1的平面角為120°時(shí),求四棱錐A-A1B1C1D1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知ABCD是正方形,DE⊥平面ABCD,BF⊥平面ABCD,且AB=FB=2DE.
(Ⅰ)求證:平面AEC⊥平面AFC;
(Ⅱ)求直線EC與平面BCF所成的角;
(Ⅲ)問在EF上是否存在一點(diǎn)M,使三棱錐M-ACF是正三棱錐?若存在,試確定M點(diǎn)的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2005•普陀區(qū)一模)如圖,已知ABCD和A1B1C1D1都是正方形,且AB∥A1B1,AA1=BB1=CC1=DD1,若將圖中已作出的線段的兩個(gè)端點(diǎn)分別作為向量的始點(diǎn)和終點(diǎn)所形成的不相等的向量的全體構(gòu)成集合M,則從集合M中任取兩個(gè)向量恰為平行向量的概率是
2
15
2
15
(用分?jǐn)?shù)表示結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案