記等差數(shù)列{an}的前n項和為Sn,已知S11=22,則a6的值為


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
B
分析:利用等差數(shù)列的求和公式,結合等差數(shù)列通項的性質,即可求得結論.
解答:由題意,S11==11a6,
∵S11=22,∴11a6=22
∴a6=2
故選B.
點評:本題考查等差數(shù)列的求和公式,考查等差數(shù)列通項的性質,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

記等差數(shù)列{an}的前n項和為Sn,若a1=
1
2
,S4=20,則S6=( 。
A、16B、24C、36D、48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

記等差數(shù)列{an}的前n項和為Sn,設S3=12,且2a1,a2,a3+1成等比數(shù)列,求Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

記等差數(shù)列{an}的前n項和為Sn,若a1=
12
,S4=20,則S6=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•廣州一模)記等差數(shù)列{an}的前n項和為Sn,若a9=10,則 S17=
170
170

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•鹽城三模)記等差數(shù)列{an}的前n項和為Sn
(1)求證:數(shù)列{
Sn
n
}是等差數(shù)列;
(2)若a1=1,且對任意正整數(shù)n,k(n>k),都有
Sn+k
+
Sn-k
=2
Sn
成立,求數(shù)列{an}的通項公式;
(3)記bn=aan(a>0),求證:
b1+b2+…+bn
n
b1+bn
2

查看答案和解析>>

同步練習冊答案