兩圓x2+y2+2ax+a2-4=0和x2+y2-4by-1+4b2=0恰有三條公切線(xiàn),若a∈R,b∈R,且ab≠0,則數(shù)學(xué)公式的最小值為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    1
  4. D.
    3
C
分析:由題意可得 兩圓相外切,根據(jù)兩圓的標(biāo)準(zhǔn)方程求出圓心和半徑,由 =3,得到 =1,
=+=++,使用基本不等式求得的最小值.
解答:由題意可得 兩圓相外切,兩圓的標(biāo)準(zhǔn)方程分別為 (x+a)2+y2=4,x2+(y-2b)2=1,
圓心分別為(-a,0),(0,2b),半徑分別為 2和1,故有 =3,∴a2+4b2=9,
=1,∴=+=++
+2=1,當(dāng)且僅當(dāng) = 時(shí),等號(hào)成立,
故選 C.
點(diǎn)評(píng):本題考查兩圓的位置關(guān)系,兩圓相外切的性質(zhì),圓的標(biāo)準(zhǔn)方程的特征,基本不等式的應(yīng)用,得到 =1,
是解題的關(guān)鍵和難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)A(a,a)可作圓x2+y2-2ax+a2+2a-3=0的兩條切線(xiàn),則實(shí)數(shù)a的取值范圍為( 。
A、a<-3或1<a<
3
2
B、1<a<
3
2
C、a<-3
D、-3<a<1或a>
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若兩直線(xiàn)y=x+2a,和y=2x+a+1的交點(diǎn)為P,P在圓x2+y2=4的內(nèi)部,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若過(guò)點(diǎn)A(a,a)可作圓x2+y2-2ax+a2+2a-3=0的兩條切線(xiàn),則實(shí)數(shù)a的取值范圍是
(-∞,-3)∪(1,
3
2
(-∞,-3)∪(1,
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若-4≤a≤3,則過(guò)點(diǎn)A(a,a)可作圓x2+y2-2ax+a2+2a-3=0的兩條切線(xiàn)的概率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下五個(gè)命題中:
①若兩直線(xiàn)平行,則兩直線(xiàn)斜率相等;
②設(shè)F1、F2為兩個(gè)定點(diǎn),a為正常數(shù),且||PF1|-|PF2||=2a,則動(dòng)點(diǎn)P的軌跡為雙曲線(xiàn);
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線(xiàn)的離心率;
④對(duì)任意實(shí)數(shù)k,直線(xiàn)l:kx-y+1-k=0與圓x2+y2-2y-4=0的位置關(guān)系是相交;
⑤P為橢圓
x2
a2
+
y2
b2
=1(a>b>0)上一點(diǎn),F(xiàn)為它的一個(gè)焦點(diǎn),則以PF為直徑的圓與以長(zhǎng)軸為直徑的圓相切.
其中真命題的序號(hào)為
③④⑤
③④⑤
.(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案