某中學將100名高一新生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A、B兩種不同的教學方式分別在甲、乙兩個班級進行教改實驗.為了了解教學效果,期末考試后,陳老師分別從兩個班級中各隨機抽取20名學生的成績進行統(tǒng)計,作出莖葉圖如下.記成績不低于90分者為“成績優(yōu)秀”.
甲 | | 乙 |
6 | 9 | 3 6 7 9 9 |
9 5 1 0 | 8 | 0 1 5 6 |
9 9 4 4 2 | 7 | 3 4 5 8 8 8 |
8 8 5 1 1 0 | 6 | 0 7 7 |
4 3 3 2 | 5 | 2 5 |
| 甲班(A方式) | 乙班(B方式) | 總計 |
成績優(yōu)秀 | | | |
成績不優(yōu)秀 | | | |
總計 | | | |
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)(2)詳見解析
解析試題分析:(1)本題是一個等可能事件的概率,試驗發(fā)生包含的事件是從不低于86分的成績中隨機抽取兩個包含的基本事件數(shù),列舉出結果,滿足條件的事件也可以列舉出結果,得到概率.
(2)根據(jù)所給的數(shù)據(jù),列出列聯(lián)表,根據(jù)列聯(lián)表中的數(shù)據(jù),做出觀測值,把觀測值同臨界值表進行比較,得到有90%的把握認為成績優(yōu)秀與教學方式有關.
試題解析:解析 (1)設“抽出的兩個均‘成績優(yōu)秀’”為事件A.
從不低于86分的成績中隨機抽取2個的基本事件為(86,93),(86,96),(86,97),(86,99),(86,99),(93,96),(93,97),(93,99),(93,99),(96,97),(96,99),(96,99),(97,99),(97,99),(99,99),共15個.
而事件A包含基本事件:
(93,96),(93,97),(93,99),(93,99),(96,97),(96,99),(96,99),(97,99),(97,99),(99,99),共10個.
所以所求概率為P(A)==.
(2)由已知數(shù)據(jù)得 甲班(A方式) 乙班(B方式) 總計 成績優(yōu)秀 1 5 6 成績不優(yōu)秀 19 15 34 總計 20 20 40
根據(jù)列聯(lián)表中數(shù)據(jù),
K2=,
由于3.137>2.706,所以有90%的把握認為“成績優(yōu)秀”與教學方式有關.
考點:1.莖葉圖;2.獨立性檢驗.
科目:高中數(shù)學 來源: 題型:解答題
為了解某班關注NBA(美國職業(yè)籃球)是否與性別有關,對某班48人進行了問卷調查得到如下的列聯(lián)表:
| 關注NBA | 不關注NBA | 合計 |
男生 | | 6 | |
女生 | 10 | | |
合計 | | | 48 |
P(K2≥k) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
商場銷售的某種飲品每件售價為36元,成本為20元.對該飲品進行促銷:顧客每購買一件,當即連續(xù)轉動三次如圖所示轉盤,每次停止后指針向一個數(shù)字,若三次指向同一個數(shù)字,獲一等獎;若三次指向的數(shù)字是連號(不考慮順序),獲二等獎;其他情況無獎.
(1)求一顧客一次購買兩件該飲品,至少有一件獲得獎勵的概率;
(2)若獎勵為返還現(xiàn)金,一等獎獎金數(shù)是二等獎的2倍,統(tǒng)計表明:每天的銷售y(件)與一等獎的獎金額x(元)的關系式為,問x設定為多少最佳?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(2014·洛陽模擬)現(xiàn)有一批產(chǎn)品共有10件,其中8件為正品,2件為次品.
(1)如果從中取出一件,然后放回,再取一件,求連續(xù)3次取出的都是正品的概率.
(2)如果從中一次取3件,求3件都是正品的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
為調查某社區(qū)居民的業(yè)余生活狀況,研究這一社區(qū)居民在20:00-22:00時間段的休閑方式與性別的關系,隨機調查了該社區(qū)80人,得到下面的數(shù)據(jù)表:
休閑方式 性別 | 看電視 | 看書 | 合計 |
男 | 10 | 50 | 60 |
女 | 10 | 10 | 20 |
合計 | 20 | 60 | 80 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
黃山旅游公司為了體現(xiàn)尊師重教,在每年暑假期間對來黃山旅游的全國各地教師和學生,憑教師證和學生證實行購買門票優(yōu)惠.某旅游公司組織有22名游客的旅游團到黃山旅游,其中有14名教師和8名學生.但是只有10名教師帶了教師證,6名學生帶了學生證.
(1)在該旅游團中隨機采訪3名游客,求恰有1人持有教師證且持有學生證者最多1人的概率;
(2)在該團中隨機采訪3名學生,設其中持有學生證的人數(shù)為隨機變量ξ,求ξ的分布列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
小波以游戲方式?jīng)Q定是參加學校合唱團還是參加學校排球隊,游戲規(guī)則為:以0為起點,再從,(如圖)這8個點中任取兩點分別分終點得到兩個向量,記這兩個向量的數(shù)量積為X。若X=0就參加學校合唱團,否則就參加學校排球隊。
(1)求小波參加學校合唱團的概率;
(2)求X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
甲乙兩人進行乒乓球比賽,各局相互獨立,約定每局勝者得1分,負者得0分,如果兩人比賽五局,乙得1分與得2分的概率恰好相等.
求乙在每局中獲勝的概率為多少?
假設比賽進行到有一人比對方多2分或打滿6局時停止,用表示比賽停止時已打局數(shù),求的期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com