分別求滿足下列條件的直線方程.

(1)

過點(diǎn)P(1,4),使它在兩坐標(biāo)軸上截距為正值,且它們的和最小.

(2)

與橢圓x2+4y2=16交于A,B兩點(diǎn),且AB中點(diǎn)為P(2,-1).

答案:
解析:

(1)

設(shè)所求直線方程為……1分

……2分

……4分

當(dāng)且僅當(dāng),即a=3,b=6時(shí)取等號    ……5分

故所求直線方程為:即2x+y-6=0……6分

(2)

設(shè),,則

……9分

∴③……11分

故所求直線方程為:……12分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l與兩坐標(biāo)軸圍成的三角形的面積為3,分別求滿足下列條件的直線l的方程:
(1)過定點(diǎn)A(-3,4);
(2)斜率為
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)M(2,2),N(5,-2),點(diǎn)P在x軸上,分別求滿足下列條件的P點(diǎn)坐標(biāo).
(1)∠MOP=∠OPN(O是坐標(biāo)原點(diǎn)).
(2)∠MPN是直角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|0<x-m<3},B={x|x≤0或x≥3},分別求滿足下列條件的實(shí)數(shù)m的取值范圍.
(1)A∩B=φ;
(2)A∪B=B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

分別求滿足下列條件的函數(shù)f(x)的解析式.
(Ⅰ)f(x+1)=x2+x;
(Ⅱ)f(x+
1
x
)=x2+
1
x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

分別求滿足下列條件的直線l的方程.
(Ⅰ)直線l過點(diǎn)(0,1),且平行于l1:4x+2y-1=0;
(Ⅱ)直線l與l2:x+y+1=0垂直,且點(diǎn)P(-1,0)到直線l的距離為
2

查看答案和解析>>

同步練習(xí)冊答案