已知Sn是等差數(shù)列{an}的前n項和,若S3=6,a5=8,則S12-S9的值是(  )
A、24B、42C、60D、78
分析:利用等差數(shù)列的求和通項公式列出關于首項和公差的方程組,求出這兩個基本量再求解S12-S9的值.或者利用Snan的關系,求出首項和公差.進一步求出所要求的值.
解答:解:S3=6,可以得出a2=2,a5=8,
從而該數(shù)列的公差為d=
8-2
5-2
=2

從而首項a1=2-2=0,故該數(shù)列的通項公式為an=2(n-1),
因此S12-S9=a10+a11+a12=18+20+22=60.
故選C.
點評:本題考查等差數(shù)列的通項公式的認識和理解,考查方程思想的運用,考查數(shù)列的前n項和和他的項之間的關系,注意運用項的之間的聯(lián)系可以簡化求解.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出以下幾個命題,正確的是
 

①函數(shù)f(x)=
x-1
2x+1
對稱中心是(-
1
2
,-
1
2
)
;
②已知Sn是等差數(shù)列{an},n∈N*的前n項和,若S7>S5,則S9>S3
③函數(shù)f(x)=x|x|+px+q(x∈R)為奇函數(shù)的充要條件是q=0;
④已知a,b,m均是正數(shù),且a<b,則
a+m
b+m
a
b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•奉賢區(qū)一模)已知Sn是等差數(shù)列{an}(n∈N*)的前n項和,且S5<S6,S6=S7>S8,則下列結論錯誤的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知Sn是等差數(shù)列{an}的前n項和,且S6=3,S11=18,則a9等于(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sn是等差數(shù)列{an}的前n項和,若s2≥4,s4≤16,則a5的最大值是
9
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知Sn是等差數(shù)列{an}的前n項和,且S11=35+S6,則S17的值為
119
119

查看答案和解析>>

同步練習冊答案