以直角坐標系的原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等的長度單位.已知直線的參數(shù)方程為 (t為參數(shù),0<a<),曲線C的極坐標方程為
(1)求曲線C的直角坐標方程;
(2)設直線l與曲線C相交于A、B兩點,當a變化時,求|AB|的最小值.
(I) ;(II) 4.

試題分析:(I)利用,易得曲線C的直角坐標方程;(II)直線過點,根據(jù)直線的參數(shù)方程中的幾何意義,知道,將直線的參數(shù)方程與拋物線方程聯(lián)立,利用韋達定理轉化為關于a的函數(shù)式,求最值即可.
試題解析:(I)由,得,所以曲線C的直角坐標方程為;
(II)將直線l的參數(shù)方程代入,得,設兩點對應的參數(shù)分別為,則, ,當時,的最小值為.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

以點F1(-1,0),F(xiàn)2(1,0)為焦點的橢圓C經(jīng)過點(1,)。
(I)求橢圓C的方程;
(II)過P點分別以為斜率的直線分別交橢圓C于A,B,M,N,求證: 使得

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知焦點在軸上的橢圓和雙曲線的離心率互為倒數(shù),它們在第一象限交點的坐標為,設直線(其中為整數(shù)).
(1)試求橢圓和雙曲線的標準方程;
(2)若直線與橢圓交于不同兩點,與雙曲線交于不同兩點,問是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線的左、右焦點分別為離心率為直線與C的兩個交點間的距離為
(I)求;
(II)設過的直線l與C的左、右兩支分別相交有A、B兩點,且證明:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知為兩個不相等的非零實數(shù),則方程所表示的曲線可能是(  )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過拋物線的焦點F作一直線l交拋物線于A、B兩點,以AB為直徑的圓與該拋物線的準線l的位置關系為(     )
A. 相交 B. 相離 C. 相切 D. 不能確定

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

F1,F(xiàn)2是雙曲線的左、右焦點,過左焦點F1的直線與雙曲線C的左、右兩支分別交于A,B兩點,若,則雙曲線的離心率是(   )
A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設圓和圓是兩個定圓,動圓P與這兩個定圓都相切,則圓P的圓心軌跡可能是(   )

              
①              ②           ③              ④            ⑤
A.①③⑤B.②④⑤C.①②④D.①②③

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線的離心率為(     )
A.B.C.D.

查看答案和解析>>

同步練習冊答案