【題目】設(shè)有關(guān)于x的一元二次方程.

1)若a是從01、2、3四個數(shù)中任取的一個數(shù),是從0、1、2三個數(shù)中任取的一個數(shù),求上述方程沒有實根的概率.

2)若a是從區(qū)間內(nèi)任取的一個數(shù),,求上述方程沒有實根的概率.

【答案】1;(2.

【解析】

1)根據(jù)題意求得所有的個,其中滿足條件的個,根據(jù)古典概型的公式,得到所求概率;

2)得到所有基本事件所構(gòu)成的區(qū)域,和所求事件的區(qū)域,根據(jù)長度型幾何概型公式,得到所求概率.

1)設(shè)事件方程無實根,

因為,,

所以當(dāng),即時,方程無實根,

所有的個:,,,

,,,,.

事件包含個事件:,,.

根據(jù)古典概型的概率公式可得事件發(fā)生的概率為.

2)設(shè)事件方程無實根

所有基本事件構(gòu)成的區(qū)域為,

為長度為的一條線段,

滿足事件的區(qū)域為,

為長度為的一條線段,

根據(jù)幾何概型的概率公式,

得事件發(fā)生的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且上滿足恒成立.

1)求實數(shù)的值;

2)令上的最小值為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點分別為,離心率為.設(shè)過點的直線與橢圓相交于不同兩點, 周長為.

)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)已知點,證明:當(dāng)直線變化時,總有TA與的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】先后2次拋擲一枚骰子,將得到的點數(shù)分別記為,.

(1)求直線與圓相切的概率;

(2)將,,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,隨著國家綜合國力的提升和科技的進(jìn)步,截至2018年底,中國鐵路運營里程達(dá)13,2萬千米,這個數(shù)字比1949年增長了5倍;高鐵運營里程突破2.9萬千米,占世界高鐵運營里程的60%以上,居世界第一位下表截取了2012--2016年中國高鐵密度的發(fā)展情況(單位:千米/萬平方千米).

年份

2012

2013

2014

2015

2016

年份代碼

1

2

3

4

5

高鐵密度

9.75

11.49

17.14

20.66

22.92

已知高鐵密度y與年份代碼x之間滿足關(guān)系式為大于0的常數(shù))若對兩邊取自然對數(shù),得到,可以發(fā)現(xiàn)線性相關(guān).

1)根據(jù)所給數(shù)據(jù),求y關(guān)于x的回歸方程(保留到小數(shù)點后一位);

2)利用(1)的結(jié)論,預(yù)測到哪一年高鐵密度會超過30千米/平方千米.

參考公式設(shè)具有線性相關(guān)系的兩個變量的一組數(shù)據(jù)為

則回歸方程的系數(shù):,.

參考數(shù)據(jù):,,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形中,,,是線段的中點,現(xiàn)沿進(jìn)行翻折,使得重合,得到如圖所示的四棱錐.

1)證明:平面;

2)若是等邊三角形,求平面和平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長均相等的正三棱柱中,的中點,上,且,則下述結(jié)論:①;②;③平面平面:④異面直線所成角為其中正確命題的個數(shù)為( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個口袋中裝有個白球和個黑球,下列事件中,是獨立事件的是(

A.第一次摸出的是白球與第一次摸出的是黑球

B.摸出后放回,第一次摸出的是白球,第二次摸出的是黑球

C.摸出后不放回,第一次摸出的是白球,第二次摸出的是黑球

D.一次摸兩個球,共摸兩次,第一次摸出顏色相同的球與第一次摸出顏色不同的球

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年諾貝爾獎陸續(xù)揭曉,北京時間1021730首先公布了生理學(xué)和醫(yī)學(xué)獎,獲獎?wù)叻謩e是三位美國科學(xué)家霍爾(Jeffrey C. Hall)、羅斯巴什(Michael Rosbash)和楊(Michael W. Ymmg),以表彰他們發(fā)現(xiàn)控制生理節(jié)律的分子機(jī)制”.通過他們的研究成果發(fā)現(xiàn),人類每天睡眠時間在7-9小時為最佳狀態(tài).從某大學(xué)隨機(jī)挑選了100名學(xué)生(男生、女生各50名)做睡眠時間統(tǒng)計調(diào)查,調(diào)查結(jié)果如下:

睡眠時間(小時)

男生

5

6

12

12

8

5

2

女生

0

2

6

18

12

10

2

請根據(jù)上面表格回答下列問題:

1)請分別估計出該校男生和女生的平均睡眠時間;

2)從此樣本中的睡眠狀態(tài)最佳的學(xué)生中按性別分層抽樣抽取5人,再將5人隨機(jī)分成兩部分,一部分有3人進(jìn)行深度睡眠時間測試,另一部分有2人進(jìn)行入睡速度測試,求恰有一個男生進(jìn)行深度睡眠時間測試的概率.

查看答案和解析>>

同步練習(xí)冊答案