【題目】已知橢圓C1:(a>b>0)的右焦點(diǎn)F與拋物線C2的焦點(diǎn)重合,C1的中心與C2的頂點(diǎn)重合.過F且與x軸垂直的直線交C1于A,B兩點(diǎn),交C2于C,D兩點(diǎn),且|CD|=|AB|.
(1)求C1的離心率;
(2)設(shè)M是C1與C2的公共點(diǎn),若|MF|=5,求C1與C2的標(biāo)準(zhǔn)方程.
【答案】(1);(2),.
【解析】
(1)求出、,利用可得出關(guān)于、的齊次等式,可解得橢圓的離心率的值;
(2)由(1)可得出的方程為,聯(lián)立曲線與的方程,求出點(diǎn)的坐標(biāo),利用拋物線的定義結(jié)合可求得的值,進(jìn)而可得出與的標(biāo)準(zhǔn)方程.
(1),軸且與橢圓相交于、兩點(diǎn),
則直線的方程為,
聯(lián)立,解得,則,
拋物線的方程為,聯(lián)立,
解得,,
,即,,
即,即,
,解得,因此,橢圓的離心率為;
(2)由(1)知,,橢圓的方程為,
聯(lián)立,消去并整理得,
解得或(舍去),
由拋物線的定義可得,解得.
因此,曲線的標(biāo)準(zhǔn)方程為,
曲線的標(biāo)準(zhǔn)方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,則當(dāng)時(shí),討論的單調(diào)性;
(2)若,且當(dāng)時(shí),不等式在區(qū)間上有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點(diǎn)都在圓C上.
(1)求圓C的方程;
(2)若圓C與直線交于A,B兩點(diǎn),且,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三位同學(xué)進(jìn)行羽毛球比賽,約定賽制如下:累計(jì)負(fù)兩場者被淘汰;比賽前抽簽決定首先比賽的兩人,另一人輪空;每場比賽的勝者與輪空者進(jìn)行下一場比賽,負(fù)者下一場輪空,直至有一人被淘汰;當(dāng)一人被淘汰后,剩余的兩人繼續(xù)比賽,直至其中一人被淘汰,另一人最終獲勝,比賽結(jié)束.經(jīng)抽簽,甲、乙首先比賽,丙輪空.設(shè)每場比賽雙方獲勝的概率都為,
(1)求甲連勝四場的概率;
(2)求需要進(jìn)行第五場比賽的概率;
(3)求丙最終獲勝的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱柱ABC–A1B1C1的底面是正三角形,側(cè)面BB1C1C是矩形,M,N分別為BC,B1C1的中點(diǎn),P為AM上一點(diǎn).過B1C1和P的平面交AB于E,交AC于F.
(1)證明:AA1//MN,且平面A1AMN⊥平面EB1C1F;
(2)設(shè)O為△A1B1C1的中心,若AO=AB=6,AO//平面EB1C1F,且∠MPN=,求四棱錐B–EB1C1F的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九大報(bào)告要求,確保到2020年我國現(xiàn)行標(biāo)準(zhǔn)下農(nóng)村貧困人口實(shí)現(xiàn)脫貧,貧困縣全部摘帽,解決區(qū)域性整體貧困,做到脫真貧、真脫貧.某貧困地區(qū)扶貧辦積極貫徹落實(shí)國家精準(zhǔn)扶貧的政策要求,帶領(lǐng)農(nóng)村地區(qū)人民群眾脫貧奔小康,扶貧辦計(jì)劃為某農(nóng)村地區(qū)購買農(nóng)機(jī)機(jī)器,假設(shè)該種機(jī)器使用三年后即被淘汰.農(nóng)機(jī)機(jī)器制造商對(duì)購買該機(jī)器的客戶推出了兩種銷售方案:
方案一:每臺(tái)機(jī)器售價(jià)7000元,三年內(nèi)可免費(fèi)保養(yǎng)2次,超過2次每次收取保養(yǎng)費(fèi)200元;
方案二:每臺(tái)機(jī)器售價(jià)7050元,三年內(nèi)可免費(fèi)保養(yǎng)3次,超過3次每次收取保養(yǎng)費(fèi)100元.
扶貧辦需要決策在購買機(jī)器時(shí)應(yīng)該選取那種方案,為此搜集并整理了50臺(tái)這種機(jī)器在三年使用期內(nèi)保養(yǎng)的次數(shù),得下表:
保養(yǎng)次數(shù) | 0 | 1 | 2 | 3 | 4 | 5 |
臺(tái)數(shù) | 1 | 10 | 19 | 14 | 4 | 2 |
記x表示1臺(tái)機(jī)器在三年使用期內(nèi)的保養(yǎng)次數(shù).
(1)用樣本估計(jì)總體的思想,求“x不超過3”的概率;
(2)按照兩種銷售方案,分別計(jì)算這50臺(tái)機(jī)器三年使用期內(nèi)的總費(fèi)用(總費(fèi)用=售價(jià)+保養(yǎng)費(fèi)),以每臺(tái)每年的平均費(fèi)用作為決策依據(jù),扶貧辦選擇那種銷售方案購買機(jī)器更合算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn)且橢圓的短軸長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知?jiǎng)又本過右焦點(diǎn),且與橢圓分別交于兩點(diǎn).試問軸上是否存在定點(diǎn),使得,恒成立?若存在求出點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年6月25日,《固體廢物污染環(huán)境防治法(修訂草案)》初次提請(qǐng)全國人大常委會(huì)審議,草案對(duì)“生活垃圾污染環(huán)境的防治”進(jìn)行了專項(xiàng)規(guī)定.某小區(qū)采取一系列措施,宣傳垃圾分類的知識(shí)與意義,并采購分類垃圾箱.為了了解垃圾分類的效果,該小區(qū)物業(yè)隨機(jī)抽取了200位居民進(jìn)行問卷調(diào)查,每位居民對(duì)小區(qū)采取的措施給出“滿意”或“不滿意”的評(píng)價(jià).根據(jù)調(diào)查結(jié)果統(tǒng)計(jì)并做出年齡分布條形圖和持不滿意態(tài)度的居民的結(jié)構(gòu)比例圖,如圖,在這200份問卷中,持滿意態(tài)度的頻率是0.65.
(1)完成下面的列聯(lián)表,并判斷能否有的把握認(rèn)為“51歲及以上”和“50歲及以下”的居民對(duì)該小區(qū)采取的措施的評(píng)價(jià)有差異
滿意 | 不滿意 | 總計(jì) | |
51歲及以上的居民 | |||
50歲及以下的居民 | |||
總計(jì) | 200 |
(2)按“51歲及以上”和“50歲及以下”的年齡段采取分層抽樣的方法從中隨機(jī)抽取5份,再從這5份調(diào)查問卷中隨機(jī)抽取2份進(jìn)行電話家訪,求電話家訪的兩位居民恰好一位年齡在51歲及以上,另一位年齡在50歲及以下的概率.
0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附表及參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且asinBbcosA+a=bcosC+ccosB.
(1)求A;
(2)若a,點(diǎn)D在BC上,且AD⊥AC,當(dāng)△ABC的周長取得最大值時(shí),求BD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com