中,內(nèi)角A,B,C所對的分別是a, b,c。已知a=2.c=, A=.
(I)求sin C和b的值;
(II)求 (2A+)的值.
(I), (II)

試題分析:(Ⅰ)解:在中,由可得.又由可得
因為故解得
所以,
(Ⅱ)解:由

所以,
點評:本題主要考查正弦定理和余弦定理的應用,二倍角公式以及兩角和的余弦公式,同角三角函數(shù)
的基本關系的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

中,, 則的值為       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知△ABC滿足, 則角C的大小為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知a、b、c是△ABC的三條邊,它們所對的角分別是A、B、C,若a、b、c成等比數(shù)列,且a2c2acbc,試求
⑴角A的度數(shù);
⑵求證:
(3)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在△ABC中,若,則
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在△ABC中,角A,BC的對邊分別是a,b,c.已知a=2,3bsinC-5csinBcosA=0,則△ABC面積的最大值是     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某港口O要將一件重要物品用小艇送到一艘正在航行的輪船上,在小艇出發(fā)時,輪船位于港口O北偏西30°且與該港口相距20海里的A處,并正以30海里/小時的航行速度沿正東方向勻速行駛,經(jīng)過t小時與輪船相遇。
(Ⅰ)若希望相遇時小艇的航行距離最小,則小艇航行速度的大小應為多少?
(Ⅱ)假設小艇的最高航行速度只能達到30海里/小時,試設計航行方案(即確定航行方向和航行速度的大。沟眯⊥芤宰疃虝r間與輪船相遇,并說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

為等邊所在平面內(nèi)一點,滿足,若,則
  的值為    
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在△中,角所對的邊分別為,已知,.則=         .

查看答案和解析>>

同步練習冊答案