設f(x)=lnx,g(x)=f(x)+f′(x).
(Ⅰ)求g(x)的單調(diào)區(qū)間和最小值;
(Ⅱ)討論g(x)與g(
1
x
)
的大小關系;
(Ⅲ)求a的取值范圍,使得g(a)-g(x)<
1
a
對任意x>0成立.
分析:(I)求導,并判斷導數(shù)的符號確定函數(shù)的單調(diào)區(qū)間和極值、最值,即可求得結(jié)果;
(Ⅱ)通過函數(shù)的導數(shù),利用函數(shù)的單調(diào)性,半徑兩個函數(shù)的大小關系即可.
(Ⅲ)利用(Ⅰ)的結(jié)論,轉(zhuǎn)化不等式,求解即可.
解答:解:(Ⅰ)由題設知f(x)=lnx,g(x)=lnx+
1
x
,
∴g'(x)=
x-1
x2
,令g′(x)=0得x=1,
當x∈(0,1)時,g′(x)<0,故(0,1)是g(x)的單調(diào)減區(qū)間.
當x∈(1,+∞)時,g′(x)>0,故(1,+∞)是g(x)的單調(diào)遞增區(qū)間,
因此,x=1是g(x)的唯一值點,且為極小值點,
從而是最小值點,所以最小值為g(1)=1.
(II)g(
1
x
)=-Inx+x

h(x)=g(x)-g(
1
x
)=2lnx-x+
1
x
,則h'(x)=-
(x-1)2
x2
,
當x=1時,h(1)=0,即g(x)=g(
1
x
)
,
當x∈(0,1)∪(1,+∞)時,h′(1)=0,
因此,h(x)在(0,+∞)內(nèi)單調(diào)遞減,
當0<x<1時,h(x)>h(1)=0,即g(x)>g(
1
x
)
,
當x>1時,h(x)<h(1)=0,即g(x)<g(
1
x
)

(III)由(I)知g(x)的最小值為1,
所以,g(a)-g(x)<
1
a
,對任意x>0,成立?g(a)-1<
1
a
,
即Ina<1,從而得0<a<e.
點評:此題是個難題.主要考查導數(shù)等基礎知識,考查推理論證能力和、運算求解能力,考查函數(shù)與方程思想,數(shù)形結(jié)合思想,化歸和轉(zhuǎn)化思想,分類與整合思想.其考查了同學們觀察、推理以及創(chuàng)造性地分析問題、解決問題的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設f(x)=lnx+x-2,則函數(shù)f(x)的零點所在的區(qū)間為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=lnx,g(x)=f′(x)+lnx
(1)求g(x)的單調(diào)區(qū)間和最小值.  
(2)討論g(x)與g(
1
x
)
的大小關系.
(3)是否存在x0>0,使得|g(x)-g(x0)|<
1
x
對任意x>0成立?若存在,求出x0的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=lnx.
(1)設F(x)=f(x+2)-
2xx+1
,求F(x)的單調(diào)區(qū)間;
(2)若不等式f(x+1)≤f(2x+1)-m2+3am+4對任意a∈[-1,1],x∈[0,1]恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=lnx,g(x)=f(x)+f′(x)
(1)求g(x)的單調(diào)區(qū)間及極小值.
(2)討論g(x)與g(
1x
)
的大小關系.

查看答案和解析>>

同步練習冊答案