已知函數(shù).
(1)若函數(shù)的圖象在點(diǎn)處的切線的傾斜角為,求上的最小值;
(2)若存在,使,求a的取值范圍.

上的最小值為;⑵ 的取值范圍為

解析試題分析:⑴ 對(duì)函數(shù)求導(dǎo)并令導(dǎo)函數(shù)為0,求得導(dǎo)函數(shù)方程的兩個(gè)根,根據(jù)兩根左右的符號(hào)可知函數(shù)的單調(diào)性,利用單調(diào)性知函數(shù)在處有極小值,再跟兩個(gè)端點(diǎn)值比大小即可求上的最小值;
⑵ 先對(duì)函數(shù)求導(dǎo)得,分、兩種情況并結(jié)合函數(shù)的單調(diào)性來(lái)討論,即可求得的取值范圍是. .
(1)                             1分
根據(jù)題意,          3分
此時(shí),,則.



















 
∴當(dāng)時(shí),最小值為.         7分
(2)∵
①若,當(dāng)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,
(1)當(dāng)時(shí),求的單調(diào)區(qū)間
(2)若上是遞減的,求實(shí)數(shù)的取值范圍; 
(3)是否存在實(shí)數(shù),使的極大值為3?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)= (a∈R).
(1)求f(x)的極值;
(2)若函數(shù)f(x)的圖象與函數(shù)g(x)=1的圖象在區(qū)間(0,e2]上有公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

修建一個(gè)面積為平方米的矩形場(chǎng)地的圍墻,要求在前面墻的正中間留一個(gè)寬度為2米的出入口,后面墻長(zhǎng)度不超過(guò)20米,已知后面墻的造價(jià)為每米45元,其它墻的造價(jià)為每米180元,設(shè)后面墻長(zhǎng)度為x米,修建此矩形場(chǎng)地圍墻的總費(fèi)用為元.
(1)求的表達(dá)式;
(2)試確定x,使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù).
(1)若時(shí)有極值,求實(shí)數(shù)的值和的極大值;
(2)若在定義域上是增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù)時(shí)取得極小值.
(1)求實(shí)數(shù)的值;
(2)是否存在區(qū)間,使得在該區(qū)間上的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3a/6/7cwof.png" style="vertical-align:middle;" />?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分13分)
設(shè)函數(shù)
,求曲線處的切線方程;
討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)=.
(1)討論的單調(diào)性;
(2)設(shè),當(dāng)時(shí),,求的最大值;
(3)已知,估計(jì)ln2的近似值(精確到0.001)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)f(x)=ln(1+x)-x-ax2.
(1)當(dāng)x=1時(shí),f(x)取到極值,求a的值;
(2)當(dāng)a滿足什么條件時(shí),f(x)在區(qū)間[-,-]上有單調(diào)遞增區(qū)間?

查看答案和解析>>

同步練習(xí)冊(cè)答案