已知數(shù)列中,
(1)求數(shù)列的通項(xiàng);
(2)令求數(shù)列的前n項(xiàng)和Tn.

(1)an=,(2)Tn=

解析試題分析:(1)本題為由,當(dāng)時(shí),,約去整理得到關(guān)于的關(guān)系式所以累加得(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/20/a/1uomz3.png" style="vertical-align:middle;" />所以數(shù)列的前n項(xiàng)和為數(shù)列與數(shù)列前n項(xiàng)和的和. 數(shù)列前n項(xiàng)和為,而數(shù)列前n項(xiàng)和需用錯(cuò)位相減法求解.運(yùn)用錯(cuò)位相減法求和時(shí)需注意三點(diǎn):一是相減時(shí)注意項(xiàng)的符號(hào),二是求和時(shí)注意項(xiàng)的個(gè)數(shù),三是最后結(jié)果需除以
試題解析:(1),
移向整理得出
當(dāng)n≥2時(shí),an=(an﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a 2﹣a 1)+a1
==1+=,n=1時(shí)也適合
所以an=,
(2)bn=nan=
Tn=﹣(
令Tn′=,兩邊同乘以
Tn′=
兩式相減得出Tn′===
Tn′=
所以Tn=﹣(
=
考點(diǎn):由,錯(cuò)位相減法求和

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某地今年年初有居民住房面積為m2,其中需要拆除的舊房面積占了一半,當(dāng)?shù)赜嘘P(guān)部門決定每年以當(dāng)年年初住房面積的10%的住房增長(zhǎng)率建設(shè)新住房,同時(shí)每年拆除xm2的舊住房,又知該地區(qū)人口年增長(zhǎng)率為4.9‰.
(1)如果10年后該地區(qū)的人均住房面積正好比目前翻一番,那么每年應(yīng)拆除的舊住房面積x是多少?
(2)依照(1)拆房速度,共需多少年能拆除所有需要拆除的舊房?
下列數(shù)據(jù)供計(jì)算時(shí)參考:

1.19=2.38
1.00499=1.04
1.110=2.6
1.004910=1.05
1.111=2.85
1.004911=1.06
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和為滿足
(1)證明數(shù)列為等比數(shù)列;
(2)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列中,
(1)求,
(2)求證:是等比數(shù)列,并求的通項(xiàng)公式
(3)數(shù)列滿足,數(shù)列的前n項(xiàng)和為,若不等式對(duì)一切恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在正項(xiàng)數(shù)列中,.對(duì)任意的,函數(shù)滿足.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)log2an+1 ,求數(shù)列的前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)列{an}中,a1=2,an+1=4an-3n+1,n∈N*.
(1)求證:數(shù)列{an-n}是等比數(shù)列;
(2)求數(shù)列{an}的前n項(xiàng)和Sn
(3)求證:不等式Sn+1≤4Sn對(duì)任意n∈N*皆成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和Sn,求通項(xiàng)an.
(1)Sn=3n-1;
(2)Sn=n2+3n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等比數(shù)列{an}滿足:|a2a3|=10,a1a2a3=125.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在正整數(shù)m,使得≥1?若存在,求m的最小值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案