.如圖,一個(gè)空間幾何體的正視圖和側(cè)視圖為全等的等邊三角形,俯視圖是半徑為的圓及圓心,若這 個(gè)幾何體的體積為,則為(     )

A.1    B.2    C.3    D.4

 

 

 

 

 

【答案】

C

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是一個(gè)空間幾何體的三視圖,則該幾何體外接球的表面積是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•閘北區(qū)二模)和平面解析幾何的觀點(diǎn)相同,在空間中,空間曲面可以看作是適合某種條件的動(dòng)點(diǎn)的軌跡.一般來(lái)說(shuō),在空間直角坐標(biāo)系O-xyz中,空間曲面的方程是一個(gè)三元方程F(x,y,z)=0.
(Ⅰ)在直角坐標(biāo)系O-xyz中,求到定點(diǎn)M0(0,2,-1)的距離為3的動(dòng)點(diǎn)P的軌跡(球面)方程;
(Ⅱ)如圖,設(shè)空間有一定點(diǎn)F到一定平面α的距離為常數(shù)p>0,即|FM|=2,定義曲面C為到定點(diǎn)F與到定平面α的距離相等(|PF|=|PN|)的動(dòng)點(diǎn)P的軌跡,試建立適當(dāng)?shù)目臻g直角坐標(biāo)系O-xyz,求曲面C的方程;  
(Ⅲ)請(qǐng)類比平面解析幾何中對(duì)二次曲線的研究,討論曲面C的幾何性質(zhì).并在圖中通過(guò)畫出曲面C與各坐標(biāo)平面的交線(如果存在)或與坐標(biāo)平面平行的平面的交線(如果必要)表示曲面C的大致圖形.畫交線時(shí),請(qǐng)用虛線表示被曲面C自身遮擋部分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆湖南省衡陽(yáng)市高二學(xué)業(yè)水平模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖所示,一個(gè)空間幾何的正視圖和側(cè)視圖都是邊長(zhǎng)為2的正方形,俯視圖是一個(gè)圓,那么這個(gè)幾何體的體積為(   )

   A.                B.

C.               D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年遼寧省鞍山市鞍鋼高中高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:填空題

如圖是一個(gè)空間幾何體的三視圖,則該幾何體外接球的表面積是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年上海市閘北區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

和平面解析幾何的觀點(diǎn)相同,在空間中,空間曲面可以看作是適合某種條件的動(dòng)點(diǎn)的軌跡.一般來(lái)說(shuō),在空間直角坐標(biāo)系O-xyz中,空間曲面的方程是一個(gè)三元方程F(x,y,z)=0.
(Ⅰ)在直角坐標(biāo)系O-xyz中,求到定點(diǎn)M(0,2,-1)的距離為3的動(dòng)點(diǎn)P的軌跡(球面)方程;
(Ⅱ)如圖,設(shè)空間有一定點(diǎn)F到一定平面α的距離為常數(shù)p>0,即|FM|=2,定義曲面C為到定點(diǎn)F與到定平面α的距離相等(|PF|=|PN|)的動(dòng)點(diǎn)P的軌跡,試建立適當(dāng)?shù)目臻g直角坐標(biāo)系O-xyz,求曲面C的方程;  
(Ⅲ)請(qǐng)類比平面解析幾何中對(duì)二次曲線的研究,討論曲面C的幾何性質(zhì).并在圖中通過(guò)畫出曲面C與各坐標(biāo)平面的交線(如果存在)或與坐標(biāo)平面平行的平面的交線(如果必要)表示曲面C的大致圖形.畫交線時(shí),請(qǐng)用虛線表示被曲面C自身遮擋部分.

查看答案和解析>>

同步練習(xí)冊(cè)答案