【題目】某校舉行運(yùn)動(dòng)會(huì),其中三級(jí)跳遠(yuǎn)的成績(jī)?cè)?.0米(四舍五入,精確到0.1米)以上的進(jìn)入決賽,把所得數(shù)據(jù)進(jìn)行整理后,分成6組畫(huà)出頻率分布直方圖的一部分(如圖),已知從左到右前5個(gè)小組的頻率分別為0.04,0.10,0.14,0.28,0.30,第6小組的頻數(shù)是7.
(Ⅰ)求進(jìn)入決賽的人數(shù);
(Ⅱ)若從該校學(xué)生(人數(shù)很多)中隨機(jī)抽取兩名,記X表示兩人中進(jìn)入決賽的人數(shù),求X的分布列及數(shù)學(xué)期望;
(Ⅲ)經(jīng)過(guò)多次測(cè)試后發(fā)現(xiàn),甲成績(jī)均勻分布在8~10米之間,乙成績(jī)均勻分布在9.5~10.5米之間,現(xiàn)甲,乙各跳一次,求甲比乙遠(yuǎn)的概率.

【答案】(Ⅰ)解:第6小組的頻率為1﹣(0.04+0.10+0.14+0.28+0.30)=0.14,

∴總?cè)藬?shù)為 (人).

∴第4、5、6組成績(jī)均進(jìn)入決賽,人數(shù)為(0.28+0.30+0.14)×50=36(人)

即進(jìn)入決賽的人數(shù)為36.

(Ⅱ)由題意知X的可能取值為0,1,2,進(jìn)入決賽的概率為 ,

∴X~ ,

P(X=1)= ,

∴所求分布列為:

X

0

1

2

P

,兩人中進(jìn)入決賽的人數(shù)的數(shù)學(xué)期望為

(Ⅲ)設(shè)甲、乙各跳一次的成績(jī)分別為x、y米,

則基本事件滿足的區(qū)域?yàn)椋?

事件A“甲比乙遠(yuǎn)的概率”滿足的區(qū)域?yàn)閤>y,如圖所示.

∴由幾何概型P(A)= =

即甲比乙遠(yuǎn)的概率為


【解析】(Ⅰ)由頻率分直方圖求出第6小組的頻率,從而求出總?cè)藬?shù),進(jìn)而得到第4、5、6組成績(jī)均進(jìn)入決賽,由此能求出進(jìn)入決賽的人數(shù).

(Ⅱ)由題意知X的可能取值為0,1,2,進(jìn)入決賽的概率為 ,從而X~ ,由此能求出X的分布列及數(shù)學(xué)期望.

(Ⅲ)設(shè)甲、乙各跳一次的成績(jī)分別為x、y米,則基本事件滿足的區(qū)域?yàn)椋? ,由此利用幾何概型能求出甲比乙遠(yuǎn)的概率.

【考點(diǎn)精析】根據(jù)題目的已知條件,利用頻率分布直方圖的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過(guò)作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列選項(xiàng)中,錯(cuò)誤的是(
A.若p為真,則¬(¬p)也為真
B.若“p∧q為真”,則“p∨q為真”為真命題
C.x∈R,使得tanx=2017
D.“2x ”是“l(fā)og x<0”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合A={x1 , x2 , x3 , x4},xi∈{﹣1,0,1},i={1,2,3,4},那么集合A中滿足條件“x12+x22+x32+x42≤3”的元素個(gè)數(shù)為(
A.60
B.65
C.80
D.81

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sinx.若存在x1 , x2 , ,xm滿足0≤x1<x2<<xm≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|++|f(xm1)﹣f(xm)|=12(m≥2,m∈N*),則m的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)=|x﹣a|,a∈R
(Ⅰ)當(dāng)a=5,解不等式f(x)≤3;
(Ⅱ)當(dāng)a=1時(shí),若x∈R,使得不等式f(x﹣1)+f(2x)≤1﹣2m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-5:不等式選講]
設(shè)函數(shù)f(x)=|x+ |+|x﹣2m|(m>0).
(Ⅰ)求證:f(x)≥8恒成立;
(Ⅱ)求使得不等式f(1)>10成立的實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 =1的一個(gè)焦點(diǎn)為F(2,0),且離心率為
(1)求橢圓方程;
(2)過(guò)點(diǎn)M(3,0)作直線與橢圓交于A,B兩點(diǎn),求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,設(shè)橢圓 =1(a>b>0)的左、右焦點(diǎn)分別為F1 , F2 , 右頂點(diǎn)為A,上頂點(diǎn)為B,離心率為e.橢圓上一點(diǎn)C滿足:C在x軸上方,且CF1⊥x軸.

(1)若OC∥AB,求e的值;
(2)連結(jié)CF2并延長(zhǎng)交橢圓于另一點(diǎn)D若 ≤e≤ ,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若兩曲線y=x2﹣1與y=alnx﹣1存在公切線,則正實(shí)數(shù)a的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案