已知=+, 且x1+x2<0, x2+x3<0, x3+x1<0則(     )

A f(x1)+f(x2)+f(x3)>0  B f(x1)+f(x2)+f(x3)<0  C f(x1)+f(x2)+f(x3)=0  D f(x1)+f(x2)+f(x3)符號(hào)不能確定.

B


解析:

=3+1,∴>0∴在上是增函數(shù),且是奇函數(shù),

∴f(x1)<f(-x2), f(x2)<f(-x3), f(x3)<f(-x1)∴f(x1)+f(x2)+f(x3)<-[f(x1)+f(x2)+f(x3)]即f(x1)+f(x2)+f(x3)<0故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

平面直角坐標(biāo)系xOy中,已知A1(x1,y1),A2(x2,y2),…,An(xn,yn)是直線l:y=kx+b上的n個(gè)點(diǎn)
(n∈N*,k、b均為非零常數(shù)).
(1)若數(shù)列{xn}成等差數(shù)列,求證:數(shù)列{yn}也成等差數(shù)列;
(2)若點(diǎn)P是直線l上一點(diǎn),且
OP
=a1
OA1
+a2
OA2
,求a1+a2的值;
(3)若點(diǎn)P滿足
OP
=a1
OA1
+a2
OA2
+…+an
OAn
,我們稱
OP
是向量
OA1
,
OA2
,…,
OAn
的線性組合,{an}是該線性組合的系數(shù)數(shù)列.當(dāng)
OP
是向量
OA1
,
OA2
,…,
OAn
的線性組合時(shí),請(qǐng)參考以下線索:
①系數(shù)數(shù)列{an}需滿足怎樣的條件,點(diǎn)P會(huì)落在直線l上?
②若點(diǎn)P落在直線l上,系數(shù)數(shù)列{an}會(huì)滿足怎樣的結(jié)論?
③能否根據(jù)你給出的系數(shù)數(shù)列{an}滿足的條件,確定在直線l上的點(diǎn)P的個(gè)數(shù)或坐標(biāo)?
試提出一個(gè)相關(guān)命題(或猜想)并開展研究,寫出你的研究過程.[本小題將根據(jù)你提出的命題(或猜想)的完備程度和研究過程中體現(xiàn)的思維層次,給予不同的評(píng)分].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+3ax2+b有極值,且極大值點(diǎn)與極小值點(diǎn)分別為A、B,又線段AB(不含端點(diǎn))與函數(shù)f(x)圖象交于點(diǎn)(1,0).
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=2x2+4x-k,已知對(duì)任意x1、x2∈[-1,1],都有|f(x1)|≤|g(x2)|,求k的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A1(x1,y1),A2(x2,y2),…,An(xn,yn)是直線l:y=kx+b上的n個(gè)不同的點(diǎn)(n∈N*,k、b均為非零常數(shù)),其中數(shù)列{xn}為等差數(shù)列.
(1)求證:數(shù)列{yn}是等差數(shù)列;
(2)若點(diǎn)P是直線l上一點(diǎn),且
OP
=a1
OA1
+a2
OA2
,求證:a1+a2=1;
(3)設(shè)a1+a2+…+an=1,且當(dāng)i+j=n+1時(shí),恒有ai=aj(i和j都是不大于n的正整數(shù),且i≠j).試探索:在直線l上是否存在這樣的點(diǎn)P,使得
OP
=a1
OA1
+a2
OA2
+…+an
OAn
成立?請(qǐng)說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,P是拋物線C:x2=2y上一點(diǎn),F(xiàn)為拋物線的焦點(diǎn),直線l過點(diǎn)P且與拋物線交于另一點(diǎn)Q,已知P(x1,y1),Q(x2,y2).
(1)若l經(jīng)過點(diǎn)F,求弦長|PQ|的最小值;
(2)設(shè)直線l:y=kx+b(k≠0,b≠0)與x軸交于點(diǎn)S,與y軸交于點(diǎn)T
①求證:
|ST|
|SP|
+
|ST|
|SQ|
=|b|(
1
y1
+
1
y2
)

②求
|ST|
|SP|
+
|ST|
|SQ|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題α:x1和x2是方程x2-mx-
94
=0
的兩個(gè)實(shí)根,不等式a2-a-3≤|x1-x2|對(duì)任意實(shí)數(shù)m∈[-1,1]恒成立;命題β:不等式ax2+2x-1>0有解.
(Ⅰ)若命題α是真命題,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若命題α是真命題且命題β是假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案