如圖,四棱錐的底面是正方形,,點(diǎn)在棱上.

(1)求證:平面平面;
(2)當(dāng),且時(shí),確定點(diǎn)的位置,即求出的值.
(1)詳見(jiàn)解析;(2) ;(3).

試題分析:(1)證面面垂直,先證明線面垂直.那么證哪條線垂直哪個(gè)面?因?yàn)锳BCD是正方形, .又由平面可得,所以可證平面,從而使問(wèn)題得證.
(2)設(shè)AC交BD=O.由(1)可得平面,所以即為三棱錐的高.由條件易得.
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024735585696.png" style="vertical-align:middle;" />,所以可求出底面的面積.又因?yàn)镻D=2,所以可求出點(diǎn)E到邊PD的距離,從而可確定點(diǎn)E的位置.
試題解析:(1)證明:四邊形ABCD是正方形ABCD,.
平面,平面,所以.
,所以平面.
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024735913432.png" style="vertical-align:middle;" />平面,所以平面平面.
(2) 設(shè).,.

在直角三角形ADB中,DB=PD=2,則PB=
中斜邊PB的高h(yuǎn)=

即E為PB的中點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在三棱柱中,AC⊥BC,AB⊥,,D為AB的中點(diǎn),且CD⊥。

(Ⅰ)求證:平面⊥平面ABC;
(2)求多面體的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,一只螞蟻由棱長(zhǎng)為1的正方體ABCD-A1B1C1D1點(diǎn)出發(fā)沿正方體的表面到達(dá)點(diǎn)的最短路程為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如果一個(gè)正三棱錐的底面邊長(zhǎng)為6,且側(cè)棱長(zhǎng)為,那么這個(gè)三棱錐的體積是        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在棱長(zhǎng)為的正方體中, P、Q是對(duì)角線上的點(diǎn),若,則三棱錐的體積為 (   )
A.B.C.D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在正三棱錐中,、分別是、的中點(diǎn),且,若側(cè)棱,則正三棱錐外接球的表面積是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

棱長(zhǎng)都是1的三棱錐的表面積為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

正方形AP1P2P3的邊長(zhǎng)為4,點(diǎn)B,C分別是邊P1P2,P2P3的中點(diǎn),沿AB,BC,CA折成一個(gè)三棱錐P-ABC(使P1,P2,P3重合于P),則三棱錐P-ABC的外接球表面積為   (   )
A.24πB.12πC.8πD.4π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

平面上,將兩個(gè)半圓弧、兩條直線圍成的封閉圖形記為D,如圖中陰影部分.記D繞y軸旋轉(zhuǎn)一周而成的幾何體為,過(guò)的水平截面,所得截面面積為,試?yán)米鏁溤、一個(gè)平放的圓柱和一個(gè)長(zhǎng)方體,得出的體積值為_(kāi)_________

查看答案和解析>>

同步練習(xí)冊(cè)答案