【題目】科赫曲線是一種外形像雪花的幾何曲線,一段科赫曲線可以通過下列操作步驟構造得到:任畫…條線段,然后把它分成三等分,以中間一段為邊向外作正三角形,并把中間一段去掉,這樣,原來的一條線段就變成了由4條小線段構成的折線,稱為“一次構造”;用同樣的方法把每一條小線段重復上述步驟,得到由16條更小的線段構成的折線,稱為“二次構造”;…;如此進行“n次構造”,就可以得到一條科赫曲線.若要在構造過程中使得到的折線的長度大于初始線段的100倍,則至少需要構造的次數(shù)是( )(取,

A.16B.17C.24D.25

【答案】B

【解析】

由題知,每一次構造即可將折線長度變成上一次長度的倍,故折線長度構成一個以為公比的等比數(shù)列,寫出其通項公式,則要在構造過程中使得到的折線的長度大于初始線段的100倍,只需求解不等式,即可得解.

設初始長度為,各次構造后的折線長度構成一個數(shù)列,

由題知,,則為等比數(shù)列,

,

假設構造次后,折線的長度大于初始線段的100倍,

,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)x3x22xaR.

1)當a=3時,求函數(shù)的單調遞減區(qū)間;

2)若對于任意x都有成立,求實數(shù)a的取值范圍;

3)若過點可作函數(shù)圖象的三條不同切線,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)若函數(shù)R上的增函數(shù),求實數(shù)a的取值范圍;

(Ⅱ)討論函數(shù)上的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,.

1)討論函數(shù)的單調性;

2)設,證明:,當時,函數(shù)恒有兩個不同零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體的棱長為,點為棱、的中點.

1)求證:平面

2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱柱中, , 的中點.

(1)證明: 平面;

(2)若,點在平面的射影在上,且側面的面積為,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(),().

1)若恒成立,求實數(shù)的取值范圍;

2)當時,過上一點的切線,判斷:可以作出多少條切線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直角三角形ABC的三個頂點都在橢圓上,其中A01)為直角頂點.若該三角形的面積的最大值為,則實數(shù)a的值為_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓柱OO1底面半徑為1,高為π,ABCD是圓柱的一個軸截面.動點M從點B出發(fā)沿著圓柱的側面到達點D,其距離最短時在側面留下的曲線Γ如圖所示.將軸截面ABCD繞著軸OO1逆時針旋轉θ0θπ)后,邊B1C1與曲線Γ相交于點P.

1)求曲線Γ長度;

2)當時,求點C1到平面APB的距離;

3)是否存在θ,使得二面角DABP的大小為?若存在,求出線段BP的長度;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案