精英家教網 > 高中數學 > 題目詳情
(坐標系與參數方程選做題) 若直線l:x-
3
y=0
與曲線C:
x=a+
2
cos?
y=
2
sin?
(?為參數,a>0)有兩個公共點A,B,且|AB|=2,則實數a的值為______;在此條件下,以直角坐標系的原點為極點,x軸正方向為極軸建立坐標系,則曲線C的極坐標方程為______.
由曲線C:
x=a+
2
cos?
y=
2
sin?
(?為參數,a>0),可得
2
cos∅=x-a,
2
sin∅=y,
平方相加可得 (x-a)2+y2=2 ①,表示以C(a,0)為圓心,以
2
為半徑的圓,
圓心C到直線l:x-
3
y=0
的距離等于d=
|a-
3
×0|
1+3
=
a
2
,
再由弦長公式可得
|AB|
2
=1=
r2-d2
=
2-
a2
4
,解得a=2.
①即 (x-2)2+y2=2 ②,
把x=ρcosθ,y=ρsinθ代入②,化簡可得 ρ2-4ρcosθ+2=0,
故答案為 2,ρ2-4ρcosθ+2=0.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(坐標系與參數方程選做題)以原點為極點,x軸的正半軸為極軸,單位長度一致的坐標系下,已知曲線C1的參數方程為
x=2cosθ+3
y=2sinθ
(θ為參數),曲線C2的極坐標方程為ρsinθ=a,則這兩曲線相切時實數a的值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

(坐標系與參數方程選做題)在極坐標系(ρ,θ)(ρ>0,0≤θ<
π
2
)中,曲線ρ=2sinθ與ρ=2cosθ的交點的極坐標為
2
π
4
2
,
π
4

查看答案和解析>>

科目:高中數學 來源: 題型:

(坐標系與參數方程選做題)
曲線
x=t
y=
1
3
t2
(t為參數且t>0)與直線ρsinθ=1(ρ∈R,0≤θ<π)交點M的極坐標為
(2,
π
6
(2,
π
6

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)(坐標系與參數方程選做題)已知在極坐標系下,點A(1,
π
3
),B(3,
3
),O是極點,則△AOB的面積等于
3
3
4
3
3
4
;
(2)(不等式選做題)關于x的不等式|
x+1
x-1
|>
x+1
x-1
的解集是
(-1,1)
(-1,1)

查看答案和解析>>

科目:高中數學 來源: 題型:

(坐標系與參數方程選做題)在極坐標系中,已知點P(2,
π3
),則過點P且平行于極軸的直線的極坐標方程為
 

查看答案和解析>>

同步練習冊答案