觀察下列等式:
1
3
+
2
3
=1;
7
3
+
8
3
+
10
3
+
11
3
=12;
16
3
+
17
3
+
19
3
+
20
3
+
22
3
+
23
3
=39;

則當(dāng)n<m且m,n∈N表示最后結(jié)果.
3n+1
3
+
3n+2
3
+…+
3m-2
3
+
3m-1
3
=
m2-n2
m2-n2
(最后結(jié)果用m,n表示最后結(jié)果).
分析:通過(guò)觀察,第一個(gè)式子為n=0,m=1.第二個(gè)式子為n=2,m=4.第三個(gè)式子為n=5,m=8,然后根據(jù)結(jié)果值和m,n的關(guān)系進(jìn)行歸納得到結(jié)論.
解答:解:當(dāng)n=0,m=1時(shí),為第一個(gè)式子
1
3
+
2
3
=1,此時(shí)1=12-0=m2-n2
當(dāng)n=2,m=4時(shí),為第二個(gè)式子
7
3
+
8
3
+
10
3
+
11
3
=12;此時(shí)12=42-22=m2-n2
當(dāng)n=5,m=8時(shí),為第三個(gè)式子
16
3
+
17
3
+
19
3
+
20
3
+
22
3
+
23
3
=39,此時(shí)39=82-52=m2-n2,
由歸納推理可知觀察下列等式:
3n+1
3
+
3n+2
3
+…+
3m-2
3
+
3m-1
3
=m2-n2
故答案為:m2-n2
點(diǎn)評(píng):通過(guò)觀察,分析、歸納并發(fā)現(xiàn)其中的規(guī)律,并應(yīng)用發(fā)現(xiàn)的規(guī)律解決問(wèn)題是應(yīng)該具備的基本能力.本題難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

3、觀察下列等式:13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=
(1+2+3+4)2,…,根據(jù)上述規(guī)律,第四個(gè)等式為
13+23+33+43+53=(1+2+3+4+5)2(或152

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察下列等式,13+23=32,13+23+33=62,13+23+33+43=102根據(jù)上述規(guī)律,13+23+33+43+53+63=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察下列等式
1=1
3+5=8
7+9+11=27
13+15+17+19=64
照此規(guī)律,第6個(gè)等式應(yīng)為
31+33+35+37+39+41=216
31+33+35+37+39+41=216

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•安徽模擬)觀察下列等式:13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=(1+2+3+4)2,…,根據(jù)以上規(guī)律,13+23+33+43+53+63+73+83=
1296
1296
.(結(jié)果用具體數(shù)字作答)

查看答案和解析>>

同步練習(xí)冊(cè)答案