如圖所示,在長(zhǎng)方體OABC-OABC中,|OA|=2,|AB|=3,|AA|=2,E是BC的中點(diǎn)。

(1)求直線AO與BE所成角的大。
(2)作OD⊥AC于D。求點(diǎn)O到點(diǎn)D的距離。
(1)AO與BE所成角的大小為arccos(2)
如圖所示,建立空間直角坐標(biāo)系。
(1)由題設(shè)知,A(2,0,0),O(0,0,2),B(2,3,2),E(1,3,0)。
=(-2,0,2),=(-1,0,-2)。
∴cos<,>==-
∴AO與BE所成角的大小為arccos。
(2)由題意得//!逤(0,3,0)。設(shè)D(x,y,0),
∴OD=(x,y,-2),=(x-2,y,0),=(-2,3,0)。
,∴ !郉(,,0)。
∴|OD|=||=
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在四棱錐PABCD中,底面ABCD是一直角梯形,∠BAD=90°,ADBCAB=BC=a,AD=2a,且PA⊥底面ABCD,PD與底面成30°角.
(1)若AEPD,E為垂足,求證:BEPD;
(2)求異面直線AECD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱錐中,,平面,,分別為,的中點(diǎn).
(1)求證:平面
(2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐的底面是平行四邊形,,,分別是棱的中點(diǎn).
(1)證明平面
(2)若二面角P-AD-B為,
①證明:平面PBC⊥平面ABCD
②求直線EF與平面PBC所成角的正弦值.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正四棱柱中,底面邊長(zhǎng)為,側(cè)棱長(zhǎng)為4,點(diǎn)分別為棱的中點(diǎn),,求點(diǎn)到平面的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖4,在底面是直角梯形的四棱錐中,,,,求面與面所成二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,PD⊥平面ABCD,且四邊形ABCD為正方形,AB=2,E是PB的中點(diǎn),
cos〈,〉=.
(1)建立適當(dāng)?shù)目臻g坐標(biāo)系,寫出點(diǎn)E的坐標(biāo);
(2)在平面PAD內(nèi)求一點(diǎn)F,使EF⊥平面PCB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知正方體ABCD-A1B1C1D1中,M、N分別為BB1、C1D1的中點(diǎn),建立適當(dāng)?shù)淖鴺?biāo)系,求平面AMN的法向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方體的棱長(zhǎng)為1,點(diǎn)在側(cè)面及其邊界上運(yùn)動(dòng),并且總保持平行平面,則動(dòng)點(diǎn)P的軌跡的長(zhǎng)度是 _______     
          

查看答案和解析>>

同步練習(xí)冊(cè)答案