21.如圖,橢圓Q:=1(a>b>0)的右焦點(diǎn)為F(c,0),過點(diǎn)F的一動(dòng)直線m繞點(diǎn)F轉(zhuǎn)動(dòng),并且交橢圓于A、B兩點(diǎn),P為線段AB的中點(diǎn).

  (1)求點(diǎn)P的軌跡H的方程;

  (2)若在Q的方程中,令a2=1+cosθ+sinθ,b2=sinθ(0<θ≤).確定θ的值,使原點(diǎn)距橢圓Q的右準(zhǔn)線l最遠(yuǎn).此時(shí),設(shè)l與x軸交點(diǎn)為D,當(dāng)直線m繞點(diǎn)F轉(zhuǎn)動(dòng)到什么位置時(shí),三角形ABD的面積最大?

解:如圖,

 

(1)設(shè)橢圓Q:=1上的點(diǎn)A(x1,y1)、B(x2,y2),又設(shè)P點(diǎn)坐標(biāo)為P(x,y),則

1°當(dāng)AB不垂直x軸時(shí),x1≠x2,

由①-②得

b2(x1-x2)2x+a2(y1-y2)2y=0,

∴b2x2+a2y2-b2cx=0,  ……………(*)

2°當(dāng)AB垂直于x軸時(shí),點(diǎn)P即為點(diǎn)F,滿足方程(*).

故所求點(diǎn)P的軌跡H的方程為:b2x2+a2y2-b2cx=0.

(2)因?yàn),橢圓Q右準(zhǔn)線l方程是x=,原點(diǎn)距橢圓Q的右準(zhǔn)線l的距離為,

由于c2=a2-b2,a2=1+cosθ+sinθ,b2=sinθ(0<θ≤).

=.

當(dāng)θ=時(shí),上式達(dá)到最大值,所以當(dāng)θ=時(shí),原點(diǎn)距橢圓Q的右準(zhǔn)線l最遠(yuǎn).

此時(shí)a2=2,b2=1,c=1,D(2,0),|DF|=1.

設(shè)橢圓Q:=1上的點(diǎn)A(x1,y1)、B(x2,y2),

△ABD面積S=|y1|+|y2|=|y1-y2|.

設(shè)直線m的方程為x=ky+1,代入=1中,得(2+k2)y2+2ky-1=0.

由韋達(dá)定理得y1+y2=-,y1y2=-,

4S2=(y1-y2)2=(y1+y22-4y1y2=,

令t=k2+1≥1,得4S2=2,當(dāng)t=1,k=0取等號(hào).

因此,當(dāng)直線m繞點(diǎn)F轉(zhuǎn)動(dòng)到垂直x軸位置時(shí),三角形ABD的面積最大.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,橢圓Q:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點(diǎn)為F(c,0),過點(diǎn)F的一動(dòng)直線m繞點(diǎn)F轉(zhuǎn)動(dòng),
并且交橢圓于A,B兩點(diǎn),P為線段AB的中點(diǎn).
(1)求點(diǎn)P的軌跡H的方程;
(2)若在Q的方程中,令a2=1+cosθ+sinθ,b2=sinθ(0<θ≤
π
2
)

設(shè)軌跡H的最高點(diǎn)和最低點(diǎn)分別為M和N.當(dāng)θ為何值時(shí),△MNF為一個(gè)正三角形?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,橢圓Q:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點(diǎn)F(c,0),過點(diǎn)F的一動(dòng)直線m繞點(diǎn)F轉(zhuǎn)動(dòng),并且交橢圓于A、B兩點(diǎn),P是線段AB的中點(diǎn).
(1)求點(diǎn)P的軌跡H的方程.
(2)在Q的方程中,令a2=1+cosq+sinq,b2=sinq(0<q≤
π
2
),確定q的值,使原點(diǎn)距橢圓的右準(zhǔn)線l最遠(yuǎn),此時(shí),設(shè)l與x軸交點(diǎn)為D,當(dāng)直線m繞點(diǎn)F轉(zhuǎn)動(dòng)到什么位置時(shí),三角形ABD的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(06年江西卷理)(12分)

如圖,橢圓Q:(a>b>0)的右焦點(diǎn)F(c,0),過點(diǎn)F的一動(dòng)直線m繞點(diǎn)F轉(zhuǎn)動(dòng),并且交橢圓于A、B兩點(diǎn),P是線段AB的中點(diǎn)

(1)求點(diǎn)P的軌跡H的方程

(2)在Q的方程中,令a2=1+cosq+sinq,b2=sinq(0<q£ ),確定q的值,使原點(diǎn)距橢圓的右準(zhǔn)線l最遠(yuǎn),此時(shí),設(shè)l與x軸交點(diǎn)為D,當(dāng)直線m繞點(diǎn)F轉(zhuǎn)動(dòng)到什么位置時(shí),三角形ABD的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓Q:(a>b>0)的右焦點(diǎn)F(c,0),過點(diǎn)F的一動(dòng)直線m繞點(diǎn)F轉(zhuǎn)動(dòng),并且交橢圓于A、B兩點(diǎn),P是線段AB的中點(diǎn)

(1)       求點(diǎn)P的軌跡H的方程

(2)       在Q的方程中,令a2=1+cosq+sinq,b2=sinq(0<q£ ),確定q的值,使原點(diǎn)距橢圓的右準(zhǔn)線l最遠(yuǎn),此時(shí),設(shè)l與x軸交點(diǎn)為D,當(dāng)直線m繞點(diǎn)F轉(zhuǎn)動(dòng)到什么位置時(shí),三角形ABD的面積最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案