如圖所示,已知與⊙O相切,為切點(diǎn),過點(diǎn)的割線交圓于、兩點(diǎn),弦,相交于點(diǎn),上一點(diǎn),且.

(1)求證:;
(2)若,,,求的長(zhǎng).

(1)證明見解析;(2)

解析試題分析:
解題思路:(1)利用三角形相似進(jìn)行證明;(2)利用圓的切割線定理進(jìn)行求值.
規(guī)律總結(jié):平面幾何證明或求值問題,往往是直線與圓結(jié)合,主要知識(shí)由相似三角形、全等三角形、圓的切割線定理等.
試題解析:(1)∵,∴,
又∵,∴,∴
又∵,∴  
(2),
是⊙的切線,,.
考點(diǎn):直線與圓的位置關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分) 已知圓,點(diǎn),直線.
(1) 求與圓相切,且與直線垂直的直線方程;
(2) 在直線上(為坐標(biāo)原點(diǎn)),存在定點(diǎn)(不同于點(diǎn)),滿足:對(duì)于圓上任一點(diǎn),都有為一常數(shù),試求所有滿足條件的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓M的圓心在直線上,且過點(diǎn)、
(1)求圓M的方程;
(2)設(shè)P為圓M上任一點(diǎn),過點(diǎn)P向圓O:引切線,切點(diǎn)為Q.試探究:
平面內(nèi)是否存在一定點(diǎn)R,使得為定值?若存在,求出點(diǎn)R的坐標(biāo);若不存在,請(qǐng)說(shuō)
明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓C:x2+(y-1)2=5,直線l:mx-y+1-m=0,且直線l與圓C交于A、B兩點(diǎn).
(1)若|AB|=,求直線l的傾斜角;
(2)若點(diǎn)P(1,1)滿足2,求此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓C:x2+(y-2)2=5,直線l:mx-y+1=0.
(1)求證:對(duì)m∈R,直線l與圓C總有兩個(gè)不同交點(diǎn);
(2)若圓C與直線l相交于A,B兩點(diǎn),求弦AB的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,直線為參數(shù))與圓為參數(shù))相切,切點(diǎn)在第一象限,則實(shí)數(shù)的值為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

直線與圓相交于A、B兩點(diǎn),則      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題


曲線x+y和它關(guān)于直線的對(duì)稱曲線總有交點(diǎn),那么m的取值范圍是__________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

(幾何證明選講選做題)已知PA是圓O的切線,切點(diǎn)為A,PA=2.AC是圓O的直徑,PC與圓O交于點(diǎn)B,PB=1,則圓O的半徑為R=         。

查看答案和解析>>

同步練習(xí)冊(cè)答案