【題目】設(shè)滿足以下兩個(gè)條件的有窮數(shù)列, , , 為階“期待數(shù)列”:
①;
②.
()分別寫出一個(gè)單調(diào)遞增的階和階“期待數(shù)列”.
()若某階“期待數(shù)列”是等差數(shù)列,求該數(shù)列的通項(xiàng)公式.
()記階“期待數(shù)列”的前項(xiàng)和為,試證: .
【答案】(1)三階: , , 四階: , , , .(2) ;(3)證明見(jiàn)解析.
【解析】試題分析:(Ⅰ)借助新定義利用等差數(shù)列,寫出一個(gè)單調(diào)遞增的3階和4階“期待數(shù)列”;
(Ⅱ)利用某階“期待數(shù)列”是等差數(shù)列,通過(guò)公差為0,大于0.小于0,分別求解該數(shù)列的通項(xiàng)公式;
(Ⅲ)判斷k=n時(shí), ,然后證明k<n時(shí),利用數(shù)列求和以及絕對(duì)值三角不等式證明即可.
試題解析:
()三階: , , 四階: , , , .
()設(shè)等差數(shù)列, , , , 公差為,
∵
∴,
∴,即,
∴且時(shí)與①②矛盾,
時(shí),由①②得: ,
∴,即,
由得,即,
∴,
令,
∴,
時(shí),同理得,
即,
由得即,
∴,
∴時(shí), .
()當(dāng)時(shí),顯然成立;
當(dāng)時(shí),根據(jù)條件①得,
,
即,
,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線l1經(jīng)過(guò)點(diǎn)A(m,1),B(-3,4),直線l2經(jīng)過(guò)點(diǎn)C(1,m),D(-1,m+1),當(dāng)l1∥l2或l1⊥l2時(shí),分別求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線,
(1)系數(shù)為什么值時(shí),方程表示通過(guò)原點(diǎn)的直線;
(2)系數(shù)滿足什么關(guān)系時(shí)與坐標(biāo)軸都相交;
(3)系數(shù)滿足什么條件時(shí)只與x軸相交;
(4)系數(shù)滿足什么條件時(shí)是x軸;
(5)設(shè)為直線上一點(diǎn),證明:這條直線的方程可以寫成
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】收入是衡量一個(gè)地區(qū)經(jīng)濟(jì)發(fā)展水平的重要標(biāo)志之一,影響收入的因素有很多,為分析學(xué)歷對(duì)收入的作用,某地區(qū)調(diào)查機(jī)構(gòu)欲對(duì)本地區(qū)進(jìn)行了此項(xiàng)調(diào)查.
(1)你認(rèn)為應(yīng)采用何種抽樣方法進(jìn)行調(diào)查?
(2)經(jīng)調(diào)查得到本科學(xué)歷月均收入條形圖如圖,試估算本科學(xué)歷月均收入的值?
(3)設(shè)學(xué)年為,令,月均收入為,已知調(diào)查機(jī)構(gòu)調(diào)查結(jié)果如下表
學(xué)歷 (年) | 小學(xué) | 初中 | 高中 | 本科 | 碩士生 | 博士生 |
6 | 9 | 12 | 16 | 19 | 22 | |
2.0 | 2.7 | 3.7 | 5.8 | 7.8 | ||
2210 | 2410 | 2910 | 6960 |
從散點(diǎn)圖中可看出和的關(guān)系可以近似看成是一次函數(shù)圖像. 若回歸直線方程為,試預(yù)測(cè)博士生的平均月收入.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)是定義在上的單調(diào)函數(shù),且對(duì)于任意正數(shù)有,已知,若一個(gè)各項(xiàng)均為正數(shù)的數(shù)列滿足,其中是數(shù)列的前項(xiàng)和,則數(shù)列中第18項(xiàng)( )
A. B. 9 C. 18 D. 36
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= sinωx+cosωx(ω>0)的圖象與直線y=﹣2的兩個(gè)相鄰公共點(diǎn)之間的距離等于π,則f(x)的單調(diào)遞減區(qū)間是( )
A.[kπ+ ,kπ+ ],k∈z
B.[kπ﹣ ,kπ+ ],k∈z
C.[2kπ+ ,2kπ+ ],k∈z
D.[2kπ﹣ ,2kπ+ ],k∈z
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin2x+sinx+cosx,以下說(shuō)法中不正確的是( )
A.f(x)周期為2π
B.f(x)最小值為﹣
C.f(x)在區(qū)間[0, ]單調(diào)遞增
D.f(x)關(guān)于點(diǎn)x= 對(duì)稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)設(shè).
①若,求函數(shù)的零點(diǎn);
②若函數(shù)存在零點(diǎn),求的取值范圍.
(2)設(shè),若對(duì)任意恒成立,試求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com