設(shè)x,y均為正實(shí)數(shù),且,則xy的最小值為_(kāi)_______.

答案:16
解析:

  由可化為xy=8+x+y,x,y均為正實(shí)數(shù)

  xy=8+x+y(當(dāng)且僅當(dāng)x=y(tǒng)等號(hào)成立)即xy-2-8

  可解得,即xy16故xy的最小值為16.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x、y均為正實(shí)數(shù),且
1
2+x
+
1
2+y
=
1
3
,則xy的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x、y均為正實(shí)數(shù),且
3
2+x
+
3
2+y
=1
,則xy的最小值為( 。
A、4
B、4
3
C、9
D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x、y均為正實(shí)數(shù),且
3
2+x
+
3
2+y
=1
,以點(diǎn)(x,y)為圓心,R=xy為半徑的圓的面積最小時(shí)圓的標(biāo)準(zhǔn)方程為
(x-4)2+(y-4)2=256
(x-4)2+(y-4)2=256

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(選修4-5:不等式選講)設(shè)x、y均為正實(shí)數(shù),且
1
2+x
+
1
2+y
=
1
3
,求xy的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y均為正實(shí)數(shù),且xy-x-y-8=0,則xy的最小值為
16
16

查看答案和解析>>

同步練習(xí)冊(cè)答案