(12分)如圖,正四棱錐PABCD的底面邊長與側(cè)棱長都是2,點(diǎn)O為底面ABCD的中心,M為PC的中點(diǎn).
(Ⅰ)求異面直線BM和AD所成角的大;
(Ⅱ)求二面角MPBD的余弦值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2011-2012年廣東省高一上學(xué)期11月月考數(shù)學(xué) 題型:解答題
(本題滿分12分)
如圖,正四棱錐S-ABCD 的底面是邊長為正方形,為底面
對角線交點(diǎn),側(cè)棱長是底面邊長的倍,P為側(cè)棱SD上的點(diǎn).
(Ⅰ)求證:AC⊥SD
(Ⅱ)若SD⊥平面PAC,為中點(diǎn),求證:∥平面PAC;
(Ⅲ)在(Ⅱ)的條件下,側(cè)棱SC上是否存在一點(diǎn)E, 使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,試說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
如圖,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,點(diǎn)E在CC1上,且平面BED
(Ⅰ)證明; C1E=3EC
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
如圖,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,點(diǎn)E在CC1上,且平面BED
(Ⅰ)證明; C1E=3EC
|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com