已知直角坐標(biāo)系中圓方程為,為圓內(nèi)一點(非圓心),

那么方程所表示的曲線是————————         (  )

A.圓

B.比圓半徑小,與圓同心的圓

C.比圓半徑大與圓同心的圓

D.不一定存在

 

【答案】

B

【解析】

試題分析:設(shè)圓的一般式方程為:x2+y2+Dx+Ey+F=0(),因為為圓內(nèi)一點,所以x02+y02+Dx0+Ey0+F<0,所以x2+y2+Dx+Ey+F=x02+y02+Dx0+Ey0+F所表示的曲線是比圓半徑小,與圓同心的圓。

考點:圓的一般式方程;點與圓的位置關(guān)系。

點評:方程x2+y2+Dx+Ey+F=0,當(dāng)時,表示圓的方程;當(dāng)時,表示點;當(dāng)時,不表示任何圖形。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)精英家教網(wǎng)(理)已知函數(shù)f(x)=
ln(2-x2)
|x+2|-2

(1)試判斷f(x)的奇偶性并給予證明;
(2)求證:f(x)在區(qū)間(0,1)單調(diào)遞減;
(3)如圖給出的是與函數(shù)f(x)相關(guān)的一個程序框圖,試構(gòu)造一個公差不為零的等差數(shù)列
{an},使得該程序能正常運行且輸出的結(jié)果恰好為0.請說明你的理由.
(文)如圖,在平面直角坐標(biāo)系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0;
(2)若四邊形ABCD的面積為8,對角線AC的長為2,且
AB
AD
=0
,求D2+E2-4F的值;
(3)設(shè)四邊形ABCD的一條邊CD的中點為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判
斷點O、G、H是否共線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直角坐標(biāo)系中圓C方程為F(x,y)=0,P(x0,y0)為圓內(nèi)一點(非圓心),那么方程F(x,y)=F(x0,y0)所表示的曲線是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知直角坐標(biāo)系中圓C方程為F(x,y)=0,P(x0,y0)為圓內(nèi)一點(非圓心),那么方程F(x,y)=F(x0,y0)所表示的曲線是


  1. A.
    圓C
  2. B.
    比圓C半徑小,與圓C同心的圓
  3. C.
    比圓C半徑大與圓C同心的圓
  4. D.
    不一定存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(理)已知函數(shù)數(shù)學(xué)公式
(1)試判斷f(x)的奇偶性并給予證明;
(2)求證:f(x)在區(qū)間(0,1)單調(diào)遞減;
(3)如圖給出的是與函數(shù)f(x)相關(guān)的一個程序框圖,試構(gòu)造一個公差不為零的等差數(shù)列
{an},使得該程序能正常運行且輸出的結(jié)果恰好為0.請說明你的理由.
(文)如圖,在平面直角坐標(biāo)系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0;
(2)若四邊形ABCD的面積為8,對角線AC的長為2,且數(shù)學(xué)公式,求D2+E2-4F的值;
(3)設(shè)四邊形ABCD的一條邊CD的中點為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判
斷點O、G、H是否共線,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案