某中學(xué)號(hào)召本校學(xué)生在本學(xué)期參加市創(chuàng)辦衛(wèi)生城的相關(guān)活動(dòng),學(xué)校團(tuán)委對(duì)該校學(xué)生是否關(guān)心創(chuàng)衛(wèi)活動(dòng)用簡(jiǎn)單抽樣方法調(diào)查了位學(xué)生(關(guān)心與不關(guān)心的各一半),
結(jié)果用二維等高條形圖表示,如圖.

(1)完成列聯(lián)表,并判斷能否有℅的把握認(rèn)為是否關(guān)心創(chuàng)衛(wèi)活動(dòng)與性別有關(guān)?

0.10
0.05
0.01

2.706
3.841
6.635
(參考數(shù)據(jù)與公式:
;
 


合計(jì)
關(guān)心
 
 
500
不關(guān)心
 
 
500
合計(jì)
 
524
1000
 
(2)已知校團(tuán)委有青年志愿者100名,他們已參加活動(dòng)的情況記錄如下:
參加活動(dòng)次數(shù)
1
2
3
人數(shù)
10
50
40
 
(i)從志愿者中任選兩名學(xué)生,求他們參加活動(dòng)次數(shù)恰好相等的概率;
(ii)從志愿者中任選兩名學(xué)生,用表示這兩人參加活動(dòng)次數(shù)之差的絕對(duì)值,求隨機(jī)變量的分布列及數(shù)學(xué)期望
(1)不能有℅的把握認(rèn)為是否關(guān)心創(chuàng)衛(wèi)活動(dòng)與性別有關(guān).
(2)(i)他們參加活動(dòng)次數(shù)恰好相等的概率為 
(ii) 分布列為








數(shù)學(xué)期望:。

試題分析:(1)作出列聯(lián)表:
 


合計(jì)
關(guān)心
252
248
500
不關(guān)心
224
276
500
合計(jì)
476
524
1000
由公式得            4分
所以不能有℅的把握認(rèn)為是否關(guān)心創(chuàng)衛(wèi)活動(dòng)與性別有關(guān).             5分
(2)(i)他們參加活動(dòng)次數(shù)恰好相等的概率為
                                       7分
(ii) 從志愿者中任選兩名學(xué)生,記“這兩人中一人參加1次活動(dòng),另一個(gè)參加兩次活動(dòng)”為事件,“這兩人中一人參加2次活動(dòng),另一個(gè)參加3次活動(dòng)”為事件,“這兩人中一人參加1次活動(dòng),另一個(gè)參加兩次活動(dòng)”, “這兩人中一人參加1次活動(dòng),另一個(gè)參加3次活動(dòng)”為事件.                                 8分
                  9分
                                  10分
分布列為








數(shù)學(xué)期望:                     12分
點(diǎn)評(píng):典型題,統(tǒng)計(jì)中的抽樣方法,頻率直方圖,概率計(jì)算及分布列問題,是高考必考內(nèi)容及題型。古典概型概率的計(jì)算問題,關(guān)鍵是明確基本事件數(shù),往往借助于“樹圖法”,做到不重不漏。本題對(duì)計(jì)算能力要求較高,難度較大。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

為了調(diào)查某大學(xué)學(xué)生在周日上網(wǎng)的時(shí)間,隨機(jī)對(duì)名男生和名女生進(jìn)行了不記名的問卷調(diào)查,得到了如下的統(tǒng)計(jì)結(jié)果:
表1:男生上網(wǎng)時(shí)間與頻數(shù)分布表
上網(wǎng)時(shí)間(分鐘)





人數(shù)
5
25
30
25
15
表2:女生上網(wǎng)時(shí)間與頻數(shù)分布表
上網(wǎng)時(shí)間(分鐘)





人數(shù)
10
20
40
20
10
(Ⅰ)若該大學(xué)共有女生750人,試估計(jì)其中上網(wǎng)時(shí)間不少于60分鐘的人數(shù);
(Ⅱ)完成表3的列聯(lián)表,并回答能否有90%的把握認(rèn)為“學(xué)生周日上網(wǎng)時(shí)間與性別有關(guān)”?
(Ⅲ)從表3的男生中“上網(wǎng)時(shí)間少于60分鐘”和“上網(wǎng)時(shí)間不少于60分鐘”的人數(shù)中用分層抽樣的方法抽取一個(gè)容量為5的樣本,再?gòu)闹腥稳扇,求至少有一人上網(wǎng)時(shí)間超過60分鐘的概率.
表3 :
 
上網(wǎng)時(shí)間少于60分鐘
上網(wǎng)時(shí)間不少于60分鐘
合計(jì)
男生
 
 
 
女生
 
 
 
合計(jì)
 
 
 
附:,其中

0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.84
5.024
6.635
7.879
10.83
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知之間的幾組數(shù)據(jù)如下表:

1
2
3
4
5
6

0
2
1
3
3
4
假設(shè)根據(jù)上表數(shù)據(jù)所得線性回歸直線方程為
求得的直線方程為則以下結(jié)論正確的是(  )
A.   B.    C.    D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

某地區(qū)對(duì)某路段公路上行駛的汽車速度監(jiān)控,從中抽取200輛汽車進(jìn)行測(cè)速分析,得到如圖所示的時(shí)速的頻率分布直方圖,根據(jù)該圖,時(shí)速在70km/h以上的汽車大約有__________輛. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

有甲、乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于或等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī)后,得到如下的列聯(lián)表:已知從全部210人中隨機(jī)抽取1人為優(yōu)秀的概率為
 
優(yōu)秀
非優(yōu)秀
總計(jì)
甲班
20
 
 
乙班
 
60
 
合計(jì)
 
 
210
 
(Ⅰ)請(qǐng)完成上面的列聯(lián)表,并判斷若按99%的可靠性要求,能否認(rèn)為“成績(jī)與班級(jí)有關(guān)”;
(Ⅱ)從全部210人中有放回抽取3次,每次抽取1人,記被抽取的3人中的優(yōu)秀人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

有甲、乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于或等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī)后,得到如下聯(lián)表:
 
優(yōu)秀
非優(yōu)秀
合計(jì)
甲班
30
 
 
乙班
 
50
 
合計(jì)
 
 
200
已知全部200人中隨機(jī)抽取1人為優(yōu)秀的概率為
(1)請(qǐng)完成上面聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認(rèn)為“成績(jī)與班級(jí)有關(guān)系”
(3)從全部200人中有放回抽取3次,每次抽取一人,記被抽取的3人中優(yōu)秀的人數(shù)為,若每次抽取得結(jié)果是相互獨(dú)立的,求的分布列,期望和方差
參考公式與參考數(shù)據(jù)如下:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在一次對(duì)“學(xué)生的數(shù)學(xué)成績(jī)與物理成績(jī)是否有關(guān)”的獨(dú)立性檢驗(yàn)的試驗(yàn)中,由列聯(lián)表算得的觀測(cè)值,參照附表:

0.050
0.010
0.001

3.841
6.635
10.828
 
判斷在此次試驗(yàn)中,下列結(jié)論正確的是(   )
A. 有99.9%以上的把握認(rèn)為“數(shù)學(xué)成績(jī)與物理成績(jī)有關(guān)”
B. “數(shù)學(xué)成績(jī)與物理成績(jī)有關(guān)” 的概率為99%
C. 在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為“數(shù)學(xué)成績(jī)與物理成績(jī)有關(guān)”
D. 在犯錯(cuò)誤的概率不超過0.001的前提下,認(rèn)為“數(shù)學(xué)成績(jī)與物理成績(jī)有關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

回歸直線方程為,則時(shí),的估計(jì)值為              

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

交通管理部門為了解機(jī)動(dòng)車駕駛員(簡(jiǎn)稱駕駛員)對(duì)某新法規(guī)的知曉情況,對(duì)甲、乙、丙、丁四個(gè)社區(qū)做分層抽樣調(diào)查.假設(shè)四個(gè)社區(qū)駕駛員的總?cè)藬?shù)為,其中甲社區(qū)有駕駛員96人.若在甲、乙、丙、丁四個(gè)社區(qū)抽取駕駛員的人數(shù)分別為12,21,25,43,則這四個(gè)社區(qū)駕駛員的總?cè)藬?shù)為(   )
A.920B.960C.808 D.1200

查看答案和解析>>

同步練習(xí)冊(cè)答案