【題目】已知直線l1過(guò)點(diǎn)A(﹣1,0),且斜率為k,直線l2過(guò)點(diǎn)B(1,0),且斜率為﹣2k,其中k≠0,又直線l1與l2交于點(diǎn)M.
(1)求動(dòng)點(diǎn)M的軌跡方程;
(2)若過(guò)點(diǎn)N( ,1)的直線l交動(dòng)點(diǎn)M的軌跡于C、D兩點(diǎn),且N為線段CD的中點(diǎn),求直線l的方程.
【答案】
(1)解:設(shè)M(x,y),
∵直線l1與l2交于點(diǎn)M,
∴聯(lián)立得: (k≠0),
消去k得: =﹣2,
則動(dòng)點(diǎn)M的軌跡方程為2x2+y2=2(x≠±1)
(2)解:由(1)得M的軌跡方程為2x2+y2=2(x≠±1),
設(shè)點(diǎn)C(x1,y1),D(x2,y2),則有2x12+y12=2①,2x22+y22=2②,
①﹣②得:2(x1﹣x2)(x1+x2)+(y1﹣y2)(y1+y2)=0,即 =﹣2× ,
∵N( ,1)為CD的中點(diǎn),
∴x1+x2=1,y1+y2=2,
∴直線l的斜率k=﹣1,
∴直線l的方程為y﹣1=﹣(x﹣ ),即2x+2y﹣3=0
【解析】(1)設(shè)M坐標(biāo)為(x,y),表示出兩直線方程,聯(lián)立消去k即可確定出M的軌跡方程;(2)設(shè)出C與D坐標(biāo),分別代入M的軌跡方程,整理由根據(jù)N為CD中點(diǎn),求出直線l斜率,即可確定出直線l方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A. 命題“”的否定是“”
B. “在上恒成立”“在上恒成立”
C. 命題“已知,若,則或”是真命題
D. 命題“若,則函數(shù)只有一個(gè)零點(diǎn)”的逆命題為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求曲線在點(diǎn)(1,f(1))處的切線方程;
(2)求經(jīng)過(guò)點(diǎn)A(1,3)的曲線的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=a(2cos2 +sinx)+b
(1)若a=﹣1,求f(x)的單調(diào)增區(qū)間;
(2)若x∈[0,π]時(shí),f(x)的值域是[5,8],求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(x-k)ex,
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)在區(qū)間[0,1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3﹣ax﹣1.
(1)若f(x)在(﹣∞,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)是否存在實(shí)數(shù)a,使f(x)在(﹣1,1)上單調(diào)遞減?若存在,求出a的取值范圍;若不存在試說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次抗洪搶險(xiǎn)中,準(zhǔn)備用射擊的方法引爆從橋上游漂流而下的一個(gè)巨大的汽油灌,已知只有5發(fā)子彈,第一次命中只能使汽油流出,第二次命中才能引爆.每次射擊相互獨(dú)立,且命中概率都是,求(1)油罐被引爆的概率;(2)如果引爆或子彈打光則停止射擊,設(shè)射擊次數(shù)為,求的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中, 平面, , 平分, 為的中點(diǎn), , .
(1)證明: 平面.
(2)證明: 平面.
(3)求直線與平面所成的角的正切值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com