【題目】

如圖,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QAQA=AB=PD

I)證明:PQ⊥平面DCQ;

II)求棱錐Q-ABCD的體積與棱錐P-DCQ的體積的比值.

【答案】解析:(I)見解析;(21.

【解析】

試題(1)要證直線與平面垂直,只須證明直線與平面內(nèi)的兩條相交直線垂直即可,注意到QA⊥平面ABCD,所以有平面PDAQ⊥平面ABCD,且交線為AD,又因為四邊形ABCD為正方形,由面面垂直的性質(zhì)可得DC⊥平面PDAQ,從而有PQ⊥DC,又因為PD∥QA,且QAABPD ,所以四邊形PDAQ為直角梯形,利用勾股定理的逆定理可證PQ⊥QD;從而可證 PQ⊥平面DCQ;(2)設(shè)ABa,則由(1)及已知條件可用含a的式子表示出棱錐QABCD的體積和棱錐PDCQ的體積從而就可求出其比值.

試題解析:(1)證明:由條件知PDAQ為直角梯形.

因為QA⊥平面ABCD,所以平面PDAQ⊥平面ABCD,交線為AD.

又四邊形ABCD為正方形,DC⊥AD,

所以DC⊥平面PDAQ.可得PQ⊥DC.

在直角梯形PDAQ中可得DQPQPD

PQ⊥QD.所以PQ⊥平面DCQ.

(2)設(shè)ABa.由題設(shè)知AQ為棱錐QABCD的高,所以棱錐QABCD的體積V1a3.

(1)PQ為棱錐PDCQ的高,而PQa,△DCQ的面積為a2

所以棱錐PDCQ的體積V2a3.

故棱錐QABCD的體積與棱錐PDCQ的體積的比值為1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)高考實行新方案規(guī)定:語文、數(shù)學(xué)和英語是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個科目中選出了三個科目作為選考科目若一名學(xué)生從六個科目中選出了三個科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生選考方案待確定.例如,學(xué)生甲選擇物理、化學(xué)和生物三個選考科目,則學(xué)生甲的選考方案確定,“物理、化學(xué)和生物為其選考方案.

某學(xué)校為了了解高一年級420名學(xué)生選考科目的意向,隨機選取30名學(xué)生進行了一次調(diào)查,統(tǒng)計選考科目人數(shù)如下表:

試估計該學(xué)校高一年級確定選考生物的學(xué)生有多少人?

寫出選考方案確定的男生中選擇物理、化學(xué)和地理的人數(shù)(直接寫出結(jié)果)

從選考方案確定的男生中任選2名,試求出這2名學(xué)生選考科目完全相同的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ,,則對此不等式描敘正

確的是( )

A. 至少存在一個以為邊長的等邊三角形

B. ,則對任意滿足不等式的都存在為邊長的三角形

C. 則對任意滿足不等式的都存在為邊長的三角形

D. ,則對滿足不等式的不存在為邊長的直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù)有兩個零點,求的取值范圍;

(Ⅱ)證明:當(dāng)時,關(guān)于的不等式上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)討論的單調(diào)性;

(2)當(dāng)時,證明:

(3)求證:對任意的,都有:(其中為自然對數(shù)的底數(shù))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的一部分圖象如圖所示,其中,.

1)求函數(shù)解析式;

2)求時,函數(shù)的值域;

3)將函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,求函數(shù)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是正方形,側(cè)面底面,若分別為的中點.

)求證:平面;

)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點是圓 上的任意一點,點與點的連線段的垂直平分線和相交于點.

(I)求點的軌跡方程;

(II)過坐標(biāo)原點的直線交軌跡于點 兩點,直線與坐標(biāo)軸不重合. 是軌跡上的一點,若的面積是4,試問直線 的斜率之積是否為定值,若是,求出此定值,否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓心在原點的兩圓半徑分別為,點是大圓上一動點,過點作軸的垂線,垂足為 與小圓交于點,過的垂線,垂足為,設(shè)點坐標(biāo)為.

(1)求的軌跡方程;

(2) 已知直線 是常數(shù),且 , 是軌跡上的兩點,且在直線的兩側(cè),滿足兩點到直線的距離相等.平面內(nèi)是否存在定點,使得恒成立?若存在,求出定點坐標(biāo);若不可能,說明理由.

查看答案和解析>>

同步練習(xí)冊答案