要建造一個(gè)容積為2000m3,深為5m的長(zhǎng)方體無(wú)蓋蓄水池,池壁的造價(jià)為95元/m2,池底的造價(jià)為135元/m2,若水池底的一邊長(zhǎng)為xm,水池的總造價(jià)為y元.
(1)把水池總造價(jià)y表示為x的函數(shù)y=f(x),并寫出函數(shù)的定義域.
(2)試證明:函數(shù)y=f(x)當(dāng)x∈(0,20]時(shí)是減函數(shù),當(dāng)x∈[20,+∞)時(shí)是增函數(shù)
(3)當(dāng)水池底的一邊長(zhǎng)x為多少時(shí),水池的總造價(jià)最低,最低造價(jià)是多少.
【答案】
分析:(1)水池總造價(jià)等于池底造價(jià)+池壁造價(jià),代入整理即可得到函數(shù)y=f(x),同時(shí)可得函數(shù)的定義域;
(2)利用單調(diào)性的證題步驟:取值,作差,變形,定號(hào),下結(jié)論即可.設(shè)x
1,x
2>0且0<x
2<x
1≤20,作差變形可得f(x
1)<f(x
2),從而當(dāng)x∈(0,20]時(shí),函數(shù)y=f(x)是減函數(shù);同理x∈[20,+∞)時(shí),函數(shù)y=f(x)是增函數(shù).
(3)利用(2)中函數(shù)的單調(diào)性,即可得結(jié)論.
解答:(1)解:由池底的一邊長(zhǎng)為xm,則池寬為
,池底面積為400m
2,
根據(jù)水池總造價(jià)等于池底造價(jià)+池壁造價(jià),可得水池總造價(jià)y為:
(x>0)
(2)證明:由
(x>0)
設(shè)x
1,x
2>0且0<x
2<x
1≤20
∴
,
∵x
1,x
2>0且0<x
2<x
1≤20
∴x
1-x
2>0,x
1x
2-400<0
∴f(x
1)-f(x
2)<0
∴f(x
1)<f(x
2),
∴當(dāng)x∈(0,20]時(shí),函數(shù)y=f(x)是減函數(shù);
同理x∈[20,+∞)時(shí),函數(shù)y=f(x)是增函數(shù).
(3)解:由(2)知當(dāng)x=20,函數(shù)y=f(x)取得最小值f(20)=92000.
答:當(dāng)水池的長(zhǎng)x為20m時(shí),水池的總造價(jià)最低,最低造價(jià)為92000元.
點(diǎn)評(píng):本題以實(shí)際問題為載體,考查函數(shù)模型的構(gòu)建,考查函數(shù)的單調(diào)性,考查函數(shù)的最值,體現(xiàn)了學(xué)數(shù)學(xué),用數(shù)學(xué)解決實(shí)際問題.