【題目】已知函數(shù)f(x)=|2x﹣1|+|2x+5|,且f(x)≥m恒成立.
(Ⅰ)求m的取值范圍;
(Ⅱ)當(dāng)m取最大值時,解關(guān)于x的不等式:|x﹣3|﹣2x≤2m﹣8.
【答案】解:(Ⅰ)要使f(x)≥m恒成立,只需m≤f(x)min .
由絕對值不等式的性質(zhì),有|2x﹣1|+|2x+5|≥|(2x﹣1)+(2x+5)|=6,
即f(x)min=6,所以m≤6.
(Ⅱ)由(Ⅰ)知,m=6,所以原不等式化為|x﹣3|﹣2x≤4,即|x﹣3|≤4+2x,
得﹣4﹣2x≤x﹣3≤4+2x,轉(zhuǎn)化為 ,
化簡,得 ,所以原不等式的解集為
【解析】對第(1)問,由m≤f(x)恒成立知,m≤f(x)min , 只需求得f(x)的最小值即可.對第(2)問,先將m的值代入原不等式中,再變形為|x﹣3|≤4+2x,利用“|g(x)|≤h(x)﹣h(x)≤g(x)≤h(x)”,可得其解集.
【考點精析】根據(jù)題目的已知條件,利用絕對值不等式的解法的相關(guān)知識可以得到問題的答案,需要掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線G:y2=2px(p>0)焦點F的直線l與拋物線G交于M、N兩點(M在x軸上方),滿足 , ,則以M為圓心且與拋物線準線相切的圓的標準方程為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=aex﹣2x﹣2a,且a∈[1,2],設(shè)函數(shù)f(x)在區(qū)間[0,ln2]上的最小值為m,則m的取值范圍是( )
A.[﹣2,﹣2ln2]
B.[﹣2,﹣ ]
C.[﹣2ln2,﹣1]
D.[﹣1,﹣ ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線 的焦點F1與橢圓 的一個焦點重合,Γ的準線與x軸的交點為F1 , 若Γ與C的交點為A,B,且點A到點F1 , F2的距離之和為4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若不過原點且斜率存在的直線l交橢圓C于點G,H,且△OGH的面積為1,線段GH的中點為P.在x軸上是否存在關(guān)于原點對稱的兩個定點M,N,使得直線PM,PN的斜率之積為定值?若存在,求出兩定點M,N的坐標和定值的大;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥平面ABC,△ABC為等腰直角三角形,∠BAC=90°,且AB=AA1 , E、F分別是CC1 , BC的中點.
(1)求證:平面AB1F⊥平面AEF;
(2)求二面角B1﹣AE﹣F的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x),當(dāng)x∈[0,2]時,f(x)=4(1﹣|x﹣1|),且對于任意實數(shù)x∈[2n﹣2,2n+1﹣2](n∈N* , n≥2),都有f(x)= f( ﹣1).若g(x)=f(x)﹣logax有且只有三個零點,則a的取值范圍是( )
A.[2,10]
B.[ , ]
C.(2,10)
D.[2,10)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xoy中,曲線C1的參數(shù)方程為 (θ為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸,與直角坐標系xoy取相同的單位長度建立極坐標系,曲線C2的極坐標方程為ρ=2cosθ﹣4sinθ.
(1)化曲線C1 , C2的方程為普通方程,并說明它們分別表示什么曲線;
(2)設(shè)曲線C2與x軸的一個交點的坐標為P(m,0)(m>0),經(jīng)過點P作斜率為1的直線,l交曲線C2于A,B兩點,求線段AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=sin(2x+ )(x∈[0, ]),若方程f(x)=a恰好有三個根,分別為x1 , x2 , x3(x1<x2<x3),則x1+x2+x3的取值范圍是( )
A.[ , )
B.[ , )
C.[ , )
D.[ , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某程序框圖如圖所示,該程序運行后若輸出S的值是2,則判斷框內(nèi)可填寫( )
A.i≤2015?
B.i≤2016?
C.i≤2017?
D.i≤2018?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com