如圖ABCD是一個(gè)直角梯形,其中AB∥DC,AB⊥BC,CD=2BC=2AB=4,過(guò)點(diǎn)A作CD的垂線AE,垂足為點(diǎn)E,現(xiàn)將△ADE折起,使二面角D-AE-C的大小是120°.
(1)求證:平面BCD⊥平面CED;
(2)求二面角A-CD-E的大。

【答案】分析:(1)先證AE⊥平面CED,再利用BC∥AE⇒BC⊥平面CED⇒平面BCD⊥平面CED;
(2)先由已知知道∠CED=120°.再過(guò)點(diǎn)E作EF垂直CD且交于點(diǎn)F,則∠AFE是二面角A-CD-E的平面角,然后在△AFE中求出∠AFE即可.
解答:解:(1)證明:因?yàn)锳E⊥CE,AE⊥DE,CE∩DE=E,所以AE⊥平面CED.
又因?yàn)锽C∥AE,
∴BC⊥平面CED,BC?面BCD,
∴平面BCD⊥平面CED;(6分)
(2)∵AE⊥CE,AE⊥DE,
∴∠CED為二面角D-AE-C的平面角,
∴∠CED=120°.
過(guò)點(diǎn)E作EF垂直CD且交于點(diǎn)F,
連接AF,∵AE⊥平面CED,∴AF在面CED上的射影為EF,得到AF⊥CD,
所以∠AFE是二面角A-CD-E的平面角,(9分)
EF=2sin30°=1,,(11分)
二面角A-CD-E大小是arctan2.(12分)
點(diǎn)評(píng):本題考查平面和平面垂直的判定和性質(zhì).在證明面面垂直時(shí),其常用方法是在其中一個(gè)平面內(nèi)找兩條相交直線和另一平面內(nèi)的某一條直線垂直
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,ABCD和ABEF都是邊長(zhǎng)為1的正方形,AM=FN,現(xiàn)將兩個(gè)正方形沿AB折成一個(gè)直二面角,O∈AB,平面MON∥平面CBE.
精英家教網(wǎng)
(1)求角MON大;
(2)設(shè)AO=x,當(dāng)x為何值時(shí),三棱錐A-MON的體積V最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•成都三模)如圖1,在平行四邊形ABCD中,AB=1,BD=
2
,∠ABD=90°,E是BD上的一個(gè)動(dòng)點(diǎn).現(xiàn)將該平行四邊形沿對(duì)角線BD折成直二面角A-BD-C,如圖2所示.
(1)若F、G分別是AD、BC的中點(diǎn),且AB∥平面EFG,求證:CD∥平面EFG;
(2)當(dāng)圖1中AE+EC最小時(shí),求圖2中二面角A-EC-B的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若一個(gè)n面體中有m個(gè)面是直角三角形,則稱這個(gè)n面體的直度為.如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,四面體A1-ABC的直度為(    )

 

A.         B.               C.                 D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若一個(gè)n面體中有m個(gè)面是直角三角形,則稱這個(gè)n面體的直度為.如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,四面體A1-ABC的直度為(    )

 

A.            B.              C.              D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆廣東省高二第七學(xué)段考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題14分)請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,如圖所示,ABCD是邊長(zhǎng)為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得ABCD四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱(底面是正方形的直棱柱)形狀的包裝盒,E、F在AB上是被切去的等腰直角三角形HEF斜邊的兩個(gè)端點(diǎn),設(shè)AE=FB=xcm.

(1)請(qǐng)用分別表示|GE|、|EH|的長(zhǎng)

(2)若廣告商要求包裝盒側(cè)面積S(cm2)最大,試問(wèn)x應(yīng)取何值?

H

 
(3)若廣告商要求包裝盒容積V(cm3)最大,試問(wèn)x應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長(zhǎng)的比值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案