【題目】某社區(qū)超市購(gòu)進(jìn)了A,B,C,D四種新產(chǎn)品,為了解新產(chǎn)品的銷售情況,該超市隨機(jī)調(diào)查了15位顧客(記為ai , i=1,2,3,…,15)購(gòu)買這四種新產(chǎn)品的情況,記錄如下(單位:件):
顧 | a1 | a2 | a3 | a4 | a5 | a6 | a7 | a8 | a9 | a10 | a11 | a12 | a13 | a14 | a15 |
A | 1 | 1 | 1 | 1 | 1 | ||||||||||
B | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||
C | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||
D | 1 | 1 | 1 | 1 | 1 | 1 |
(Ⅰ)若該超市每天的客流量約為300人次,一個(gè)月按30天計(jì)算,試估計(jì)產(chǎn)品A的月銷售量(單位:件);
(Ⅱ)為推廣新產(chǎn)品,超市向購(gòu)買兩種以上(含兩種)新產(chǎn)品的顧客贈(zèng)送2元電子紅包.現(xiàn)有甲、乙、丙三人在該超市購(gòu)物,記他們獲得的電子紅包的總金額為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望;
(Ⅲ)若某顧客已選中產(chǎn)品B,為提高超市銷售業(yè)績(jī),應(yīng)該向其推薦哪種新產(chǎn)品?(結(jié)果不需要證明)
【答案】解:(I)由題意可得:5× ×30=3000(件).因此產(chǎn)品A的月銷售量約為3000(件). (II)一位顧客購(gòu)買兩種以上(含兩種)新產(chǎn)品的概率= = .
現(xiàn)有甲、乙、丙三人在該超市購(gòu)物,記他們獲得的電子紅包的個(gè)數(shù)為ξ,則ξ~B(3, ).P(ξ=k)= .
隨機(jī)變量X=2ξ的分布列為:
X | 0 | 2 | 4 | 6 |
P |
|
|
|
|
EX= = .
(III)某顧客已選中產(chǎn)品B,為提高超市銷售業(yè)績(jī),應(yīng)該向其推薦B種新產(chǎn)品.
【解析】(I)由題意可得:產(chǎn)品A的月銷售量約為5× ×30(件).(II)一位顧客購(gòu)買兩種以上(含兩種)新產(chǎn)品的概率= = . 現(xiàn)有甲、乙、丙三人在該超市購(gòu)物,記他們獲得的電子紅包的個(gè)數(shù)為ξ,則ξ~B(3, ).P(ξ=k)= .隨機(jī)變量X=2ξ,即可得出.(III)由于顧客購(gòu)買B種新產(chǎn)品的概率最大,因此推薦此種新產(chǎn)品.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四種說(shuō)法中,
①命題“存在x∈R,x2﹣x>0”的否定是“對(duì)于任意x∈R,x2﹣x<0”;
②命題“p且q為真”是“p或q為真”的必要不充分條件;
③已知冪函數(shù)f(x)=xα的圖象經(jīng)過(guò)點(diǎn)(2, ),則f(4)的值等于 ;
④已知向量 =(3,﹣4), =(2,1),則向量 在向量 方向上的投影是 .
說(shuō)法錯(cuò)誤的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在高中學(xué)習(xí)過(guò)程中,同學(xué)們經(jīng)常這樣說(shuō):“數(shù)學(xué)物理不分家,如果物理成績(jī)好,那么學(xué)習(xí)數(shù)學(xué)就沒(méi)什么問(wèn)題.”某班針對(duì)“高中生物理學(xué)習(xí)對(duì)數(shù)學(xué)學(xué)習(xí)的影響”進(jìn)行研究,得到了蘇俄生的物理成績(jī)與數(shù)學(xué)成績(jī)具有線性相關(guān)關(guān)系的結(jié)論.現(xiàn)從該班隨機(jī)抽取5名學(xué)生在一次考試中的數(shù)學(xué)和物理成績(jī),如表:
成績(jī) 編號(hào) | 1 | 2 | 3 | 4 | 5 |
物理(x) | 90 | 85 | 74 | 68 | 63 |
數(shù)學(xué)(y) | 130 | 125 | 110 | 95 | 90 |
(1)求數(shù)學(xué)成績(jī)y對(duì)物理成績(jī)x的線性回歸方程 = x+ ( 精確到0.1).若某位學(xué)生的物理成績(jī)?yōu)?0分,預(yù)測(cè)他的數(shù)學(xué)成績(jī);
(2)要從抽取的這五位學(xué)生中隨機(jī)選出2位參加一項(xiàng)知識(shí)競(jìng)賽,求選中的學(xué)生的數(shù)學(xué)成績(jī)至少有一位高于120分的概率.(參考公式: = , = ﹣ ) (參考數(shù)據(jù):902+852+742+682+632=29394,90××125+74×110+68×95+63×90=42595)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】由于研究性學(xué)習(xí)的需要,中學(xué)生李華持續(xù)收集了手機(jī)“微信運(yùn)動(dòng)”團(tuán)隊(duì)中特定20名成員每天行走的步數(shù),其中某一天的數(shù)據(jù)記錄如下: 5860 6520 7326 6798 7325
8430 8215 7453 7446 6754
7638 6834 6460 6830 9860
8753 9450 9860 7290 7850
對(duì)這20個(gè)數(shù)據(jù)按組距1000進(jìn)行分組,并統(tǒng)計(jì)整理,繪制了如下尚不完整的統(tǒng)計(jì)圖表:
步數(shù)分組統(tǒng)計(jì)表(設(shè)步數(shù)為x)
組別 | 步數(shù)分組 | 頻數(shù) |
A | 5500≤x<6500 | 2 |
B | 6500≤x<7500 | 10 |
C | 7500≤x<8500 | m |
D | 8500≤x<9500 | 2 |
E | 9500≤x<10500 | n |
(Ⅰ)寫(xiě)出m,n的值,并回答這20名“微信運(yùn)動(dòng)”團(tuán)隊(duì)成員一天行走步數(shù)的中位數(shù)落在哪個(gè)組別;
(Ⅱ)記C組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為v1 , ,E組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為v2 , ,試分別比較v1與v2 , 與 的大;(只需寫(xiě)出結(jié)論)
(Ⅲ)從上述A,E兩個(gè)組別的數(shù)據(jù)中任取2個(gè)數(shù)據(jù),記這2個(gè)數(shù)據(jù)步數(shù)差的絕對(duì)值為ξ,求ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(4﹣x)ex﹣2 , 試判斷是否存在m使得y=f(x)與直線3x﹣2y+m=0(m為確定的常數(shù))相切?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)f(x)=cos2x圖象上所有點(diǎn)向右平移 個(gè)單位長(zhǎng)度后得到函數(shù)g(x)的圖象,若g(x)在區(qū)間[0,a]上單調(diào)遞增,則實(shí)數(shù)a的最大值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=x2﹣bx+c滿足f(1+x)=f(1﹣x)且f(0)=3,則f(bx)和f(cx)的大小關(guān)系是( )
A.f(bx)≤f(cx)
B.f(bx)≥f(cx)
C.f(bx)>f(cx)
D.大小關(guān)系隨x的不同而不同
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:(x+1)2+y2=8,點(diǎn)A(1,0),P是圓C上任意一點(diǎn),線段AP的垂直平分線交CP于點(diǎn)Q,當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),點(diǎn)Q的軌跡為曲線E.
(1)求曲線E的方程;
(2)若直線l:y=kx+m與曲線E相交于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),求△MON面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com