已知圓x2+y2=4內(nèi)一定點(diǎn)M(0,1),經(jīng)M且斜率存在的直線交圓于A(x1,y1)、B(x2,y2)兩點(diǎn),過(guò)點(diǎn)A、B分別作圓的切線l1,l2.設(shè)切線l1,l2交于點(diǎn)Q.
(1)設(shè)點(diǎn)P(x0,y0)是圓上的點(diǎn),求證:過(guò)P的圓的切線方程是
x
 
0
x+y0y=4

(2)求證Q在一定直線上.
分析:(1)當(dāng)P不在坐標(biāo)軸上時(shí),求得切線的斜率,用點(diǎn)斜式求得切線方程,當(dāng)P在x、y軸上時(shí),經(jīng)檢驗(yàn)也滿足,從而得出結(jié)論.
(2)設(shè)直線AB的方程為y=kx+1,代入x2+y2=4得(1+k2)x2+2kx-3=0,利用一元二次方程根與系數(shù)的關(guān)系以及(1)的結(jié)論求得Q(x0,y0)的坐標(biāo),可得Q(x0,y0)的坐標(biāo)滿足直線y=4的方程,從而得出結(jié)論.
解答:解:(1)當(dāng)P不在坐標(biāo)軸上時(shí),OP的斜率為
y0
x0
,故切線的斜率為-
x0
y0
,故切線方程為 y-y0=-
x0
y0
(x-x0)⇒y0y-y02=-x0x+
x
2
0
,
x02+
y
2
0
=4
,可得
x
 
0
x+y0y=4

當(dāng)P在y軸上時(shí),P(0,2)或P(0,-2),此時(shí)切線方程為y=2或y=-2,上述方程也滿足.
同理可得,當(dāng)P在x上時(shí)上述方程也滿足,
綜上,原命題得證.
(2)設(shè)直線AB的方程為y=kx+1,
代入x2+y2=4得(1+k2)x2+2kx-3=0,∴x1+x2=
-2k
1+k2
,x1x2=-3
(定值).
設(shè)Q(x0,y0),
x1x0+y1y0=4
x2x0+y2y0=4
,解得y0=
4(x2-x1)
x2y1-x1y2
,x0=
4(y2-y1)
x1y2-x2y1

把y1=kx1+1,y2=kx2+1代入得:y0=4,x0=-4k.
故Q在一定直線y=4上.
點(diǎn)評(píng):本題主要考查求圓的切線方程,一元二次方程根與系數(shù)的關(guān)系,直線過(guò)定點(diǎn)問(wèn)題,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

4、已知圓x2+y2=4,過(guò)A(4,0)作圓的割線ABC,則弦BC中點(diǎn)的軌跡方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知圓x2+y2=4上恰有兩個(gè)點(diǎn)到直線4x-3y+c=0的距離為1,則實(shí)數(shù)c的取值范圍是
(-15,-5)∪(5,15)
(-15,-5)∪(5,15)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知圓x2+y2=4上有且僅有三個(gè)點(diǎn)到直線12x-5y+c=0的距離為1,則實(shí)數(shù)c的值是
±13
±13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知圓x2+y2=4及點(diǎn)P(1,1),則過(guò)點(diǎn)P的直線中,被圓截得的弦長(zhǎng)最短時(shí)的直線的方程是
x+y-2=0
x+y-2=0

查看答案和解析>>

同步練習(xí)冊(cè)答案